\(\frac{x}{-xy+x+1}-\frac{y}{yz-y+1}+\frac{z}{xz+z-1}với\)

Với xyz=1 và các mẫu thứ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

1 tháng 10 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\) (nhân 2 vế với\(xyz\ne0\))

=> x2 + 2yz = x2 + 2yz - xy - yz - xz = x2 - xz - xy + yz = x(x - z) - y(x - z) = (x - y)(x - z).

Tương tự,y2 + 2xz = (y - x)(y - z) ; z2 + 2xy = (z - x)(z - y)

\(\Rightarrow\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)

1 tháng 10 2016

ngu quá có thế cx k làm đc.

3 tháng 12 2018

\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)

\(M=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{y}{y+yz+xyz}\)

\(M=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{y+yz+1}\)

\(M=\frac{yz+y+1}{1+y+yz}\)

Tham khảo nhé~

1 tháng 3 2018

1/x + 1/y  +1/z = 0

<=> xy+yz+zx = 0

<=> yz=-xy-zx

<=> yz/x^2+2yz = yz/x^2+yz-xy-zx = yz/(x-y).(x-z)

Tương tự : xz/y^2+2xz = xz/(y-x).(y-z) ; xy/z^2+2xy = xy/(z-x).(z-y)

=> A = yz/(x-y).(x-z) + xz/(y-x).(y-z) + xy/(z-x).(z-y)

        = -yz.(y-z)-zx.(z-x)-xy.(x-y)/(x-y).(y-z).(z-x)

        = z^2y-y^2z+x^2z-xz^2+y^2x-x^2y/(x-y).(y-z).(z-x)

        = (x-y).(y-z).(z-x)/(x-y).(y-z).(z-x)

        = 1

Tk mk nha

1 tháng 3 2018

https://olm.vn/hoi-dap/question/255332.html

Bạn tham khảo ở đây nhé!!  Cách của mình cũng giống của bạn này