Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)≥\(\frac{12\left(x+5\right)^2}{4}\)
<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)
<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300
<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0
<=>-124x-297≥0
<=>124x+297≤0
<=>124x≤-297
<=>x≤\(\frac{-297}{124}\)
b, Tương tự câu a
c, |5−3x|=2+x
TH1: 5-3x=2+x
<=> -3x - x = 2 - 5
<=> -4x = -3
<=> x = 3/4
TH2: 5-3x = -2 - x
<=> -3x + x = -2 - 5
<=> -2x = -7
<=> x = 7/2
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
Câu 1:
PT <=> \(\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
<=> \(\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
<=> \(\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Mà \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
<=> x - 100 = 0
<=> x = 100
Câu 2
PT <=> \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
<=> \(\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Mà \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
<=> x + 100 = 0
<=> x = -100
Câu 3:
PT <=> \(\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
<=> \(\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\)
mà \(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\ne0\)
<=> x+15 = 0
<=> x = -15
1/
\(\Leftrightarrow\frac{x-85}{15}-1+\frac{x-74}{13}-2+\frac{x-67}{11}-3+\frac{x-64}{9}-4=0\)
\(\Leftrightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
\(\Rightarrow x=100\)
2/
\(\frac{x+2}{98}+1+\frac{x+4}{96}+1-1-\frac{x+6}{94}-1-\frac{x+8}{92}=0\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
\(\Rightarrow x=-100\)
3/
\(\frac{x+2}{13}+1+\frac{2x+45}{15}-1-1-\frac{3x+8}{37}+1-\frac{4x+69}{9}=0\)
\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}-\frac{3\left(x+15\right)}{37}-\frac{4\left(x+15\right)}{9}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\)
\(\Rightarrow x=-15\)
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
a, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)
=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}=0\right)\)
=> \(x-2004=0\)
=> \(x=2004\)
Vậy phương trình có nghiệm là x = 2004 .
b, Ta có : \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
=> \(\frac{x-85}{15}-1+\frac{x-74}{13}-2+\frac{x-67}{11}-3+\frac{x-64}{9}-4=10-1-2-3-4=0\)
=> \(\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
=> \(\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
=> \(x-100=0\)
=> \(x=100\)
Vậy phương trình có nghiệm là x = 100 .
Well, it's ez, right? Hướng dẫn thôi nhé :> (*gớm, xài brain nhiều vào :V*)
a, ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
\(\frac{x}{2x+2}-\frac{2x}{x^2-2x-3}=\frac{x}{6-2x}\\ \Leftrightarrow\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\frac{x}{-2\left(x-3\right)}\\ \Leftrightarrow\frac{x\left(x-3\right)-4x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{-x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\Leftrightarrow...\)
Đến đây khử mẫu, giải PT và xét nghiệm với ĐKXĐ nhé (cứ thấy linh tinh với ĐKXĐ là cho outplay lun :>)
b, ĐKXĐ: \(x\notin\left\{2;3\right\}\)
\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\\ \Leftrightarrow\frac{-5}{-\left(x-2\right)\left(x-3\right)}+\frac{x+3}{2-x}=0\\\Leftrightarrow\frac{-5}{\left(2-x\right)\left(x-3\right)}=\frac{-\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}\Leftrightarrow...\)
c, ĐKXĐ: \(x\notin\left\{-2;1\right\}\)
\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3-\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\Leftrightarrow...\)
Thế thui, chúc bạn học tốt nha.
dù sao thì cũng cảm ơn cậu.
câu này tớ thật dự không biết thì mới hỏi mà chứ có phải là không dùng óc để suy nghĩ đâu. cậu học tốt nhé
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
\(\frac{x-2}{71}+\frac{x-4}{69}=\frac{x-6}{67}+\frac{x-8}{65}\)
\(\Leftrightarrow\frac{x-2}{71}-1+\frac{x-4}{69}-1=\frac{x-6}{67}-1+\frac{x-8}{65}-1\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}=\frac{x-73}{67}+\frac{x-73}{65}\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}-\frac{x-73}{67}-\frac{x-73}{65}=0\)
\(\Leftrightarrow\left(x-73\right)\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)=0\)
Mà \(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\ne0\)
\(x-73=0\Leftrightarrow x=73\)
\(\frac{x-2}{71}-1+\frac{x-4}{69}-1=\frac{x-6}{67}-1+\frac{x-8}{65}-1\)
\(\Leftrightarrow\frac{x-73}{71}+\frac{x-73}{69}=\frac{x-73}{67}+\frac{x-73}{65}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{71}+\frac{1}{69}-\frac{1}{67}-\frac{1}{65}\right)=0\)
\(\Rightarrow...\)