Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right).\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Leftrightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\text{Mà }\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\ne0\text{ nên }x-258=0\Leftrightarrow x=258\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)
\(\Leftrightarrow\) \(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}-10=0\)
\(\Leftrightarrow\) \(\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=0\)
\(\Leftrightarrow\) \(\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-166}{23}=0\)
\(\Leftrightarrow\) \(\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow\) \(x-258=0\) \(\Leftrightarrow\) \(x=258\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=-10\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=-10\)
\(.....................\)
đến đây thì dễ rồi :)
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
Ta có: \(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-170}{23}=10\)
\(\Rightarrow\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-170}{23}-10=0\)
\(\Leftrightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-170}{23}-4\right)=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Leftrightarrow\left(x-258\right)=0\)
\(\Rightarrow x=258\)
Vậy x=258
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
<=>\(\dfrac{x-241}{17}-1+\dfrac{x-220}{19}-2+\dfrac{x-195}{21}-3+\dfrac{x-166}{23}-4=0\)
<=>\(\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
<=>\(\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
vì 1/17+1/19+1/21+1/23 khác 0
=>x-258=0<=>x=258
vậy..........
Nhập phép tính vào máy tính
Sau đó bấm shift - solve sexra kết quả 258
\(\)Câu 1 ĐK : x khác -1
a ) \(A=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\frac{3}{x^2+1}\)
b) Thiếu đề , đề phải là x nguyên
=> \(3⋮x^2+1\Rightarrow x^2+1\in\left\{\pm1;\pm3\right\}\)
Mà x nguyên nên x \(\in\left\{-2;0\right\}\)
c) Ta có \(x^2+1\ge1\Rightarrow\frac{3}{x^2+1}>0\)
=> Phân thức đạt giá trị lớn nhất khi \(x^2+1\) nhỏ nhất
=> x = 0
=> GTLN của A = \(\frac{3}{1}=3\)
Câu 2
a ) \(\left|x-4\right|+\left|x-12\right|=8\) (*)
Vời \(x\ge12\)
Phương trình (*) tương đương
x -4 + x -12 = 8
=> 2x -16 =8
=> 2x = 24
=>x = 12 (1)
Với \(4\le x< 12\) có
(* ) tương đương
x -4 +12 - x = 8
=> 8 = 8
=> PT có nghiệm \(4\le x< 12\) (2)
Với \(x< 4\) , có (*) tương đương
4-x +12 - x = 0
=> 16 - 2x = 0
=> x = 8 (3)
Kết hợp (1); (2) ;(3) có x là nghiệm của phương trình với \(4\le x\le12\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-163}{23}=10\)
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Leftrightarrow x=258\)
Vậy \(x=258\)
Chúc bạn học tốt !!!
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)
\(\Leftrightarrow\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10-1-2-3-4\)
\(\Leftrightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=10-1-2-3-4\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{20}+\frac{x-258}{21}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-258=0\).Do \(\frac{1}{17}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\ne0\)
\(\Leftrightarrow x=258\)