Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
a) ta có x/2=y/3=z/4 mà x^2 -y^2 +z^2 -> x^2/2^2=y^2/3^2=z^2/4^2
-> x^2/4=y^2/9=z^2/16
Ta có : \(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{1}{2}}=\frac{x-y}{\frac{2}{3}-\frac{1}{2}}=\frac{15}{\frac{1}{6}}=90\)
=> \(\frac{x}{\frac{2}{3}}=90\Rightarrow x=90.\frac{2}{3}=60\)
=> \(\frac{y}{\frac{1}{2}}=90\Rightarrow y=90.\frac{1}{2}=45\)
=> \(\frac{z}{\frac{4}{3}}=90\Rightarrow z=90.\frac{4}{3}=120\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Ta có : \(\frac{1}{2}x=\frac{x}{2}\) ; \(\frac{2}{3}y=\frac{y}{\frac{3}{2}}\); \(\frac{3}{4}z=\frac{z}{\frac{4}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow\begin{cases}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\end{cases}\)
Vậy \(x=60;y=45;z=40\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3y-6}{9}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10
=>x=11
y-2=5.3=15
=>y=17
z-3=5.4=20
=>z=23
Vậy (x;y;z)=(11;17;23)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5
Thay kq này vào bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
theo tính chất dãy tỉ số bằng nhau
=x-1/2=y-2/3=z-3/4=x-1+(y-2)-(z-3)/2+3-4
=x+y-z/1=15/1=15
=>x-1/2=15=>x=31
y-2/3=15=>y=47
z-3/4=15=>z=63
x-1/2=y-2/3=z-3/4
=x+y-z-1-2+3/2+3-4=15/1=15
x-1/2=15 =>x-1=30=>x=31
y-2/3=15 =>45+2=47
y-3/4=15 =>y=63
t i c k đê ae