Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn chép sai đề , phải là dấu " < " chứ . Đây tớ CM này :
ta có:\(\sqrt{t}+\sqrt{t+1}< 2\sqrt{t+1}\)
\(\Leftrightarrow\frac{1}{\sqrt{t+1}-\sqrt{t}}< 2\sqrt{t+1}\Leftrightarrow\frac{\sqrt{t+1}}{2\left(\sqrt{t+1}-\sqrt{t}\right)}< t+1\)
\(\Leftrightarrow\frac{1}{\left(t+1\right)\sqrt{t}}< \frac{2\left(\sqrt{t+1}-\sqrt{t}\right)}{\sqrt{t+1}\sqrt{t}}=2\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t+1}}\right)\)
Thế vào phương trình trên , ta có : \(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{n\sqrt{n+1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) \(=\)\(1-\frac{1}{\sqrt{n+1}}\)
Đó rõ ràng là < (+_+)
mk nhầm chút ,đoạn cuối phải là \(\le2\left(1-\frac{1}{\sqrt{n+1}}\right)\)
Lời giải:
Sử dụng phương pháp hệ số bất định, ta sẽ chứng minh:
$\frac{1}{x^2+x}\geq \frac{5}{4}-\frac{3}{4}x(*)$
Thật vậy:
$(*)\Leftrightarrow \frac{1}{x^2+x}\geq \frac{5-3x}{4}$
$\Leftrightarrow 4\geq (5-3x)(x^2+x)$
$\Leftrightarrow 4-(5-3x)(x^2+x)\geq 0$
$\Leftrightarrow (x-1)^2(3x+4)\geq 0$ (luôn đúng với mọi $x>0$)
Hoàn toàn tương tự:
$\frac{1}{y^2+y}\geq \frac{5}{4}-\frac{3y}{4}$
$\frac{1}{z^2+z}\geq \frac{5}{4}-\frac{3z}{4}$
Cộng theo vế các BĐT trên ta có:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{15}{4}-\frac{3}{4}(x+y+z)=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)