Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Với x > 2 ta có hàm số liên tục
Để hàm số liên tục trên R thì hàm số phải liên tục trên khoảng (-∞; 2) và liên tục tại x = 2.
- Hàm số liên tục trên (-∞; 2) khi và chỉ khi tam thức
TH 1:
TH 2:
Nên thì
Hàm số liên tục tại (thỏa (*))
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))
\(\Rightarrow\) Không tồn tại m thỏa mãn
Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn
Khi \(x\ne1\) thì \(f\left(x\right)=\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\) hoàn toàn xác định
nên f(x) liên tục trên các khoảng \(\left(-\infty;1\right);\left(1;+\infty\right)\)(1)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{3x^2-3x}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{3x\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}3x=3\cdot1=3\)
\(f\left(1\right)=m\cdot1+1=m+1\)
Để hàm số liên tục trên R thì hàm số cần liên tục trên các khoảng sau: \(\left(-\infty;1\right);\left(1;+\infty\right)\) và liên tục luôn tại x=1(2)
Từ (1),(2) suy ra để hàm số liên tục trên R thì hàm số cần liên tục tại x=1
=>\(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)
=>m+1=3
=>m=2
a) TXĐ: R
+) Với x \(\ne\) 1, f(x) = \(\frac{2x^2-x-1}{x-1}\) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\))
+) Với x = 1
Ta có: f(1) = 3
và \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)
Vì f(1) = \(\lim\limits_{x\rightarrow1}f\left(x\right)\)
=> Hàm số f(x) liên tục tại điểm x = 1
Vậy f(x) liên tục trên R
b) TXĐ: R
+) Với x > 1
Có: f(x) = \(\frac{\sqrt{5x-1}-2}{x-1}\) liên tục trên ( 1; + \(\infty\))
+) Với x < 1
Có: f(x) = -6x + 5 liên tục trên ( - \(\infty\) ; 1 )
+) Với x = 1
f(1) = - 1
\(\lim\limits_{x\rightarrow1-}f\left(x\right)=\lim\limits_{x\rightarrow1-}\left(-6x+5\right)=-1\)
\(\lim\limits_{x\rightarrow1+}f\left(x\right)=\lim\limits_{x\rightarrow1+}\frac{\sqrt{5x-1}-2}{x-1}=\lim\limits_{x\rightarrow1+}\frac{5}{\sqrt{5x-1}+2}=\frac{5}{4}\)
Vì \(f\left(1\right)=\lim\limits_{x\rightarrow1-}f\left(x\right)\ne\lim\limits_{x\rightarrow1+}f\left(x\right)\)
=> f(x) gian đoạn tại x =1
Vậy: f(x) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\)) và gián đoạn tại x = 1
\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\left(x-2\right)=-4\)
\(\Rightarrow\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=-4\)
\(\Rightarrow f\left(x\right)\) liên tục tại \(x=-2\) (còn x=2 thì hàm xác định nên hiển nhiên liên tục rồi)
\(\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=3\)
\(f\left(5\right)=3\)
\(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\lim\limits_{x\rightarrow5^+}\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)
\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow f\left(x\right)\) liên tục tại \(x=5\)