\(\frac{\sqrt{21+x}+\sqrt{21-x}}{\sqrt{21+1}-\sqrt{21-x}}=\frac{21}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2 2020

Chắc dưới mẫu bạn ghi nhầm căn đầu tiên

ĐKXĐ: \(-21\le x\le21;x\ne0\)

\(\Leftrightarrow\frac{\left(\sqrt{21+x}+\sqrt{21-x}\right)^2}{21+x-21+x}=\frac{21}{x}\)

\(\Leftrightarrow\frac{42+2\sqrt{21^2-x^2}}{2x}=\frac{21}{x}\)

\(\Leftrightarrow\sqrt{21^2-x^2}=0\)

\(\Rightarrow x=\pm21\)

26 tháng 2 2020

bạn ơi, sao bước 2 làm thế nào mà đc bước 3 vậy ạ

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

23 tháng 10 2015

\(y=\left(5-\sqrt{21}\right)^x+7\left(5+\sqrt{21}\right)^x\)

ta tính y'>0

hàm đồng biến

mặt khác g=\(2^{x+3}\)

tính g'>0

là hàm đồng biến 

mà x=0 là 1 nghiệm của pt

suy ra x=0 là nghiệm duy nhất của pt

7 tháng 10 2019

1,\(ĐK:\forall x\in R\) => D = R

2, ĐK: \(\left\{{}\begin{matrix}-x^2+4x+21\ge0\\-x^2+3x+10\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-3\le x\le7\\-2\le x\le5\end{matrix}\right.\)\(\Rightarrow-2\le x\le5\)

D = [-2,5]

NV
23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)

Từ pt thứ nhất của hệ:

\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)

\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)

\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thay xuống pt dưới:

\(\sqrt{x-16}+\sqrt{x-9}=7\)

\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)

\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)

\(\Leftrightarrow...\)

NV
12 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{12-x}=a\\\sqrt[3]{4+x}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a+b=2\\a^3+b^3=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\left(a+b\right)\left(a^2+b^2-ab\right)=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2-a\\a^2+b^2-ab=8\end{matrix}\right.\)

\(\Rightarrow a^2+\left(2-a\right)^2-a\left(2-a\right)-8=0\)

\(\Leftrightarrow3a^2-6a-4=0\Rightarrow a=\frac{3\pm\sqrt{21}}{2}\)

\(\Rightarrow\sqrt[3]{12-x}=\frac{3\pm\sqrt{21}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{36-16\sqrt{21}}{9}\\x=\frac{36+16\sqrt{21}}{9}\end{matrix}\right.\)

Bài toán có tới 2 nghiệm thỏa mãn? b có 2 giá trị là \(\pm16\) lấy cái nào?

30 tháng 3 2016

1) ĐK:x\(\ge\frac{1}{2}\)

PT\(\Leftrightarrow\sqrt{2x-1}=x\)

\(\Leftrightarrow\begin{cases}x\ge0\\2x-1=x^2\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge0\\x=1\end{cases}\)

\(\Leftrightarrow x=1\)   (thỏa mãn)

30 tháng 3 2016

\(A=\frac{\left(3+\sqrt{5}\right)^2+\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(A=\frac{18+10}{4}\)

\(A=7\)