Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~
a)
\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)
= 0
b)
\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)
= 2
c)
\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)
= 4
d)
\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)
\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)
= 1
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)
\(=\tan^2\alpha.\cos^2\alpha=1\)
b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)
\(=\sin\alpha\left(1-\cos^2\alpha\right)\)
\(=\sin\alpha.\sin^2\alpha\)
bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)