Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(2S-S=1-\frac{1}{2^{10}}\)
\(S=\frac{1024}{1024}-\frac{1}{1024}=\frac{1023}{1024}\)
Vậy \(S=\frac{1023}{1024}\)
P.S: Bạn để \(S=1-\frac{1}{2^{10}}\)vẫn được.
456 x 128 / 451 x 128 =58368/57728
123 x 451 / 128 x 451 = 55473/57728
so sánh : 58368/57728 ...>.... 55473/ 57728
vậy suy ra : 456/451 ....>.... 123/128
tk mk nha mk nhanh nhất
\(\frac{456}{451}\) > \(\frac{123}{128}\)tích cho mik nhé
a) \(\frac{22}{7}\div\left(11-\chi\right)=\frac{7}{5}-\frac{2}{3}\)
\(\frac{22}{7}\div\left(11-\chi\right)=\frac{11}{15}\)
\(\left(11-\chi\right)=\frac{22}{7}\div\frac{11}{15}\)
\(\left(11-\chi\right)=\frac{30}{7}\)
\(\chi=11-\frac{30}{7}\)
\(\chi=\frac{47}{7}\)
b) (x+1)+(x+2)+(x+3)+...+(x+100)=5550
Từ 1 đến 100 có 100 số hạng => Có 100 x
(x + x + x + .... + x) + (1 + 2 + 3 + .. + 100) = 5550
Áp dụng tính chất cộng dãy số cách đều, ta có
(100.x) + 5050 = 5550
100.x = 5550 - 5050
100.x = 500
x = 500 : 100
x = 5
Đặt A = \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
A = \(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt B = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2B - B = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
B = \(1-\frac{1}{2^{10}}\)
=> A = \(1-B=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)
<=> x\(-10\left(\frac{1}{11x13}+\frac{1}{13x15}+...+\frac{1}{53x55}\right)\)) =\(\frac{3}{11}\)
x\(-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
X-10\(\left(\frac{1}{11}-\frac{1}{55}\right)\)=\(\frac{3}{11}\)
X-\(\frac{40}{55}\)=\(\frac{3}{11}\)
X=\(\frac{3}{11}+\frac{40}{55}=\frac{15+40}{55}=\frac{55}{55}=1\)
Ta có :
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
Chúc bạn học tốt ~
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(\Leftrightarrow A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{49}{100}\)
Vậy A=\(\frac{49}{100}\)
n=2015 . bạn nhân 2 vào lần lượt các p/s rồi đưa 2 ra ngoài
Bài toán :
Lời giải:
Tập xác định của phương trình
Rút gọn thừa số chung
Lời giải thu được
\(\frac{n+2}{3}\)= 0 => n + 2 = 0 => n = -2