\(\frac{\frac{\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\frac{x-1}{\sqrt{x^2-1}-x+1}}{\sqrt{x^2-1}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}.\frac{\left(x+\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

3 tháng 6 2017

=\(\frac{1}{x^2-\sqrt{x}}.\frac{x\sqrt{x}+x+\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\left(\sqrt{x^3}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)

13 tháng 9 2016

a/ Ta có

P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

14 tháng 9 2016

mình muốn hỏi câu b cơ bạn ơi