\(\frac{cos^2x}{1-tanx}+\frac{sin^2x}{1-cotx}=1-sinx.cosx\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

NV
18 tháng 9 2020

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

NV
18 tháng 9 2020

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

NV
17 tháng 9 2020

\(N=\frac{\frac{3sin^2x}{cos^2x}+\frac{12sinx.cosx}{cos^2x}+\frac{cos^2x}{cos^2x}}{\frac{sin^2x}{cos^2x}+\frac{sinx.cosx}{cos^2x}-\frac{2cos^2x}{cos^2x}}=\frac{3tan^2x+12tanx+1}{tan^2x+tanx-2}=...\)

NV
25 tháng 7 2020

b/

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cosx+1-cos^2x+2cos^2x-1=\frac{1}{2}\)

\(\Leftrightarrow cos^2x+\frac{1}{2}cosx=0\)

\(\Leftrightarrow cosx\left(cosx+\frac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

c/ ĐKXĐ: ...

\(\Leftrightarrow\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{2}{sin2x}\right)^2+\frac{3}{sin2x}-7=0\)

Đặt \(\frac{1}{sin2x}=a\Rightarrow4a^2+3a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=arcsin\left(-\frac{4}{7}\right)+k2\pi\\2x=\pi-arcsin\left(-\frac{4}{7}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Leftrightarrow2cos2x.cosx+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos^22x=0\)

\(\Leftrightarrow cos2x\left(2cosx+cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\2cosx+cos2x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\left(2\right)\Leftrightarrow2cosx+2cos^2x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}-1}{2}\\cosx=\frac{-\sqrt{3}-1}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\)

NV
10 tháng 8 2020

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\)

\(\frac{cosx}{sinx}-1=\frac{cos^2x-sin^2x}{1+\frac{sinx}{cosx}}+sin^2x-sinx.cosx\)

\(\Leftrightarrow\frac{cosx-sinx}{sinx}=cosx\left(cosx-sinx\right)-sinx\left(cosx-sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{sinx}=cosx-sinx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sinx.cosx-sin^2x=1\)

\(\Leftrightarrow2sinx.cosx+1-2sin^2x=3\)

\(\Leftrightarrow sin2x+cos2x=3\)

Vế trái không lớn hơn 2 nên pt vô nghiệm

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
23 tháng 7 2020

a/ ĐKXĐ:

\(sin\left(\frac{\pi}{2}.sinx\right)\ne0\Rightarrow\frac{\pi}{2}.sinx\ne k\pi\)

\(\Rightarrow sinx\ne2k\)

\(-1\le sinx\le1\Rightarrow sinx\ne0\Rightarrow x\ne k\pi\)

b/

\(sinx-1\ge0\Leftrightarrow sinx\ge1\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

c/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow sin4x\ne0\)

\(\Rightarrow x\ne\frac{k\pi}{4}\)

d/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sinx+cotx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin^2x+cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne k\pi\\-cos^2x+cosx+1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\cosx\ne\frac{1-\sqrt{5}}{2}\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\pm arccos\left(\frac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\Rightarrow x\ne k\pi\)

NV
13 tháng 7 2020

10. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(2cos2x+tanx=\frac{4}{5}\)

\(\Leftrightarrow4cos^2x-2+tanx=\frac{4}{5}\)

\(\Leftrightarrow\frac{4}{1+tan^2x}+tanx-\frac{14}{5}=0\)

Đặt \(tanx=t\)

\(\Rightarrow\frac{20}{1+t^2}+5t-14=0\)

\(\Leftrightarrow5t^3-14t^2+5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(5t^2-4t-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{2+\sqrt{19}}{5}\\t=\frac{2-\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2=tana\\tanx=\frac{2+\sqrt{19}}{5}=tanb\\tanx=\frac{2-\sqrt{19}}{5}=tanc\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=a+k\pi\\x=b+k\pi\\x=c+k\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

9.

\(\Leftrightarrow cos2x-3cosx=2\left(cosx+1\right)\)

\(\Leftrightarrow2cos^2x-1-3cosx=2cosx+2\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=3\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)