\(\frac{b}{a+c}\)+\(\frac{a}{b+c}\)+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

gt : a / (b+c) + b/(a+c) + c/(a+b) =1

A = a2/(b+c) + b2/(a+c) + c2/(a+b)

= a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]

=a(b+c+a)/(b+c) - a + b(a+b+c)/(c+a) - b + c(a+b+c)/(a+b) - c

=(a+b+c)[a/ (b+c)+b/(c+a)+c/(a+b)] - (a+b+c)

=(a+b+c)-(a+b+c)=0

6 tháng 4 2017

1 bai thoi cung dc

5 tháng 7 2016

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)     (1)

Ta có : a+b+c khác 0

do nếu a+b+c=0=>\(\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=1\)=>-3=1(Vô lí)

do a+b+c khác 0 nên ta nhân (a+b+c) vào (1)

=>\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

=>\(\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)+c^2}{a+b}=a+b+c\)

=>\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)(ĐPCM)

4 tháng 2 2017

1)\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)

=>\(\frac{x-b-c}{a}-1+\frac{x-c-a}{b}-1+\frac{x-a-b}{c}-1=0\)

=>\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)

=>\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

Nếu x - a -b -c = 0 => phương trình có nghiệm duy nhất x = a + b + c

Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)=> Phương trình có vô số nghiệm x thuộc R

4 tháng 2 2017

Bùi Vũ Kim Thư nếu mà bn ko hiểu thì cứ hỏi nhae haha

15 tháng 12 2016

Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\) (NHân cả hai vế vs a+b+c)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

=> đpcm

15 tháng 12 2016

những con số tuyệt hơn mọi lời nói

1 tháng 10 2016

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{ac}{b+c}+\frac{bc}{c+a}=a+b+c\)

\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{ab+bc}{c+a}+\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}=a+b+c\)

\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+a+b+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).

7 tháng 2 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

\(\frac{b}{c^2}+\frac{1}{b}\ge2\sqrt{\frac{b}{c^2}\cdot\frac{1}{b}}=\frac{2}{c}\)

\(\frac{c}{a^2}+\frac{1}{c}\ge2\sqrt{\frac{c}{a^2}\cdot\frac{1}{c}}=\frac{2}{a}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

Đáp án của tôi giống Thắng Nguyễn