Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b})\)
\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=(a+b)\cdot c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b(a-c)=a(c-b)\)
\(\frac{a}{c}=\frac{a-c}{c-b}(đpcm)\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{a+b}{ab}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow ac+cb=2ab\Rightarrow ac-ab=-cb+ba\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
bn ghi sai đề kìa :v
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\left(2\right)\)
Mà \(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow2ab=c\left(a+b\right)\left(1\right)\)
Nhận thấy ( 1 )=( 2 ) => đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow VT=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\Rightarrow VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
1.
Ta có : \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
\(\Rightarrow\frac{a.\left(2bz-3cy\right)}{a^2}=\frac{2b.\left(3cx-az\right)}{4b^2}=\frac{3c.\left(ay-2bx\right)}{9c^2}\)
\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)
Áp dụng tính chất của dãy tỉ số bằng hau ta có :
\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)
\(=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2bz-3cy}{a}=0\\\frac{3cx-az}{2b}=0\\\frac{ay-2bx}{3c}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz-3cy=0\\3cx-az=0\\ay-2bx=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{x}{3c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
1. Sửa lại dòng cuối
\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)
theo bài ra ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
=> 2ab = c(a + b)
=> ab + ab = ca + cb
=> ab - cb = ca - ab
=> b( a - c ) = a( c - b )
=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)