\(\frac{a}{b}\)=\(\frac{b}{c}\)\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Ta đặt

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=k\left(k\in R\right)\)

=>a=bk;b=ck;c=ak

=>a+b+c=k(a+b+c) 

Mà a+b+c khác 0

=>1=k

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

=>a=b=c

=>M=\(\frac{a^{2020}.b^2.c}{c^{2023}}=\frac{a^{2020}.a^2.a}{a^{2023}}=\frac{a^{2023}}{a^{2023}}=1\)

Vậy M=1

27 tháng 10 2016

tu day bieu thu => a=b=c

M=a^(2020+2+1)/a^2023=a^2023/a^2023

M=1

Có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a;b;c\ne0;c=2020\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\). Từ đó ta có

\(a=b=c\). Mà \(c=2020\Leftrightarrow a=b=2020\)

Vậy \(a=b=2020\)

câu t ả lời cuối cùng ra hà hơi rất khắm

12 tháng 11 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

Vì a+b+c+d khác 0

=> b+c+d=a+c+d=a+b+d=a+b+c

=>a=b=c=d

Khi đó:

a + b = c+d

b+c= (a+d)

c+d=a+b

d+a=b+c

=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

 

 

 

12 tháng 11 2016

mk có chút nhầm lẫn các đấu = phải là +

28 tháng 11 2019

Câu hỏi của Đoàn Thị Như Thảo - Toán lớp 7 - Học toán với OnlineMath

24 tháng 12 2019

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)\(\Rightarrow\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}\)(1)

Ta có: \(M=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow M=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-abc}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow\)Biểu thức (1) bằng 2

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)\(\Rightarrow M=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

26 tháng 11 2017

Do \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ \)

=> \(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{a+b+c+a+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}=2+2+2=6\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

26 tháng 12 2019

theo tích chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)