\(\frac{a}{b}<\frac{a+n}{b+n}\)với \(a,b\in Z\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Bạn dựa vào bài trước nha.

Câu trên cũng phải chia ra 3 trường hợp nha bài trên.

TH1: a = b

TH2: a < b

TH3: a > b

=> \(\frac{a}{b}<\frac{a+n}{b+n}\) với \(a,b\in Z\)\(n\in N\) là không đúng cũng không sai.

3 tháng 6 2017

1/ 

a/ Sai . Sửa : a \(\in N\Rightarrow a\ge0\)                                            b/ Đúng 

c/ Sai . Sửa : \(a\in N\)và b < a \(\Rightarrow b\)<0                               c/ Sai . Sửa :a\(\in N\) và b\(\le0\Rightarrow\)a\(\ge b\)

2/

TH1 : a<b<0           TH2 : a<0<b                     TH3 : 0<a<b

Vậy có tất cả 3 trường hợp về thứ tự của 3 số a , b, 0

3/ 

a/ Đúng

b/ Sai . Sửa : Mọi a,b\(\in Z\); |a| > |b| thì:

   - Với a,b đều là số nguyên dương thì a > b

   - Với a ,b đều là số nguyên âm thì a < b

   - Với a âm , b dương thì  a < b

   -Với a dương , b âm thì a > b

c/ Đúng

11 tháng 3 2017

phải là Lục Cẩn Niên chứ !

3 tháng 5 2017

1. \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

A nguyên nên \(3⋮n-2\). Vậy \(n-2\in\left(1,-1,3,-3\right)\Rightarrow n\in\left(3,1,5,-1\right)\)thì A nguyên.

2. a,Ta cần CM  \(\frac{a}{b}< \frac{a+c}{b+c}\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow ab+ac< ab+bc\Rightarrow ac< bc\)(luôn đúng)

Suy ra điều phải chứng minh.

b, Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Có:(suy ra từ phần a) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

BẤM ĐÚNG CHO MÌNH, KO THÌ LẦN SAU KO GIÚP NỮA

3 tháng 5 2017

Để \(A=\frac{n+1}{n-2}\)có giá trị nguyên => n + 1 chia hết cho n-2

\(=>\left(n-2\right)+3⋮\)\(n-2\)

Mà \(\left(n-2\right)⋮\)\(n-2\)

\(=>3⋮\)\(n-2\)

\(=>n-2\inƯ\left(3\right)=\){1;-1;3;-3}

Ta có bảng :

n-21-13-3
n315-1

Vậy \(n\in\){3;1;5;-1} để \(A=\frac{n+1}{n-2}\in Z\)

20 tháng 4 2016

\(\frac{a}{b}<1\Rightarrow\frac{a+n}{b+n}>\frac{a}{b}\)

Điều này là tất nhiên rồi. Vì nếu n thuộc N thì bao giờ \(\frac{a+n}{b+n}\) cũng phải lớn hơn a/b.
 

20 tháng 4 2016

Vậy nếu \(n\in Z\)thì điều trên sẽ k đúng phải k

22 tháng 2 2016

Nếu \(\frac{a}{b}<1\) thì a<b

Ta có:\(\frac{a}{b}<\frac{a+n}{b+n}\)

=>a.(b+n)<b.(a+n)

=>ab+an<ba+bn

=>an<bn

=>a<b(điều phải chứng tỏ)

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu