\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)rút gon phân số

CMR nếu a

là số nguyên th...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+2-1\right)}{a\left(a^2+2a+2+1\right)}=\frac{a^2\left(a+1\right)}{a\left(a^2+2a+3\right)}=\frac{a^2+a}{a^2+2a+3}\) (đã rút gọn xong)

nếu a nguyên \(\frac{a^2+a}{a^2+a+a+3}=\frac{1\left(a^2+a\right)}{a+3\left(a^2+a\right)}=\frac{1}{a+3}\)=> tối giản

7 tháng 5 2017

k mik nha

7 tháng 5 2017

Máy mik bị lag chữ a, mik thay bằng chữ x nha

a/

\(\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2-1}{x^3+1+2x\left[x+1\right]}\)

\(=\frac{\left[x^3-x^2\right]+\left[x^2-x\right]+\left[x-1\right]}{\left[x^3+x^2\right]-\left[x^2+x\right]+\left[x+1\right]+2x\left[x+1\right]}\)

\(=\frac{x^2\left[x-1\right]+x\left[x-1\right]+\left[x-1\right]}{x^2\left[x+1\right]-x\left[x+1\right]+\left[x+1\right]+2x\left[x+1\right]}\)

\(=\frac{x^2\left[x+1\right]+\left[x-1\right]\left[x+1\right]}{\left[x^2-x+1+2x\right]\left[x+1\right]}\)

\(=\frac{\left[x+1\right]\left[x^2+x-1\right]}{\left[x+1\right]\left[x^2+x+1\right]}=\frac{x^2+x-1}{x^2+x+1}\)

x khác -1 bạn nhé [ví x = -1 thí ps k có giá trị]

b/

Gọi d là \(UCLN\left[x^2+x-1;x^2+x+1\right]\)

Mà \(x^2+x-1=x\left[x+1\right]-1lẻ⋮d\Rightarrow dlẻ\)

Mặt khác: \(x^2+x+1-\left[x^2+x-1\right]=2⋮d\)

=> d = 1

=> Phân số \(\frac{x^2+x-1}{x^2+x+1}\)

Tối giản khi x nguyên

Pạn thay x thành a giùm, cảm ơn

23 tháng 10 2015

em tham khảo câu hỏi tương tự nhé

17 tháng 1 2016

\(y=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{a^3+a^2+a^2+2a+1}\)

\(=\frac{a^2.\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2.\left(a+1\right)+\left(a+1\right)^2}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

16 tháng 2 2016

bài tán này khó quá 

16 tháng 2 2016

Mk mới học lớp 5 thôi.

5 tháng 3 2017

\(giải:\)\(a,\)

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)

                                                   \(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

                                                    \(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

                                                     \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

                                                      \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

                                                       \(=\frac{a^2+a-1}{a^2+a+1}\)

\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)

\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)

\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)

\(\Rightarrow-2⋮d\)hay\(2⋮d\)

mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)

mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ

=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2

\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)

\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)

5 tháng 3 2017

a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :

a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d

=> (a2 + a + 1) - (a2 + a - 1) ⋮ d

=> 2 ⋮ d => d = { 1; 2 }

Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2

=> a(a + 1) + 1 không chia hết cho 2

=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1

=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản 

Hay \(A\)là phân số tối giản (đpcm)