K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2020

Mẫn Li

Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)

Câu 2b sửa lại thì cm dễ thôi:

\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)

\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)

\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)

\(=cot^2a.cot^2b-1\)

(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))

28 tháng 4 2020

Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:

\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)

Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!

28 tháng 1 2021

toán lớp 10 á

2 tháng 1 2022

Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)

Vì \(x^2+x+4>0,\forall x\inℝ\)

nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)

\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)

\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

NV
4 tháng 11 2019

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

NV
18 tháng 11 2019

Nhìn BĐT 4 số ngán quá

\(1\ge4\sqrt[4]{\frac{1}{a^2b^2c^2d^2}}\Rightarrow abcd\ge16\)

\(\Rightarrow VT=\frac{abcd}{8}+2\ge4\) (1)

\(VP=\frac{a+c}{\sqrt{ac}}+\frac{b+d}{\sqrt{bd}}\le\frac{2\left(a+c\right)}{a+c}+\frac{2\left(b+d\right)}{b+d}=4\) (2)

(1);(2) \(\Rightarrow\) đpcm

Dấu "=" xảy ra khi \(a=b=c=d=2\)

18 tháng 11 2019

Nguyễn Việt Lâm dòng 4 có phải ngược dấu không ạ?

\(VP=\frac{a+c}{\sqrt{ac}}+\frac{b+d}{\sqrt{bd}}\ge\frac{2\left(a+c\right)}{a+c}+\frac{2\left(b+d\right)}{b+d}\) chứ (Theo AM-GM)

20 tháng 8 2019

Đặt: f(a;b;c) =\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Vai trò của a, b, c là như nhau có thể giả sử: \(a=max\left\{a,b,c\right\}\)

Ta có: \(f\left(a;b;\sqrt{ab}\right)=\frac{a}{a+b}+\frac{b}{b+\sqrt{ab}}+\frac{\sqrt{ab}}{\sqrt{ab}+a}\)

\(=\frac{a}{a+b}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

Ta chứng minh:

\(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

+) Chứng minh: \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)

Xét : \(f\left(a;b;c\right)-f\left(a;b;\sqrt{ab}\right)=\frac{b}{b+c}+\frac{c}{a+c}-\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{b\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)+c\left(b+c\right)\left(\sqrt{a}+\sqrt{b}\right)-2\sqrt{b}\left(b+c\right)\left(a+c\right)}{\left(b+c\right)\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{ab\sqrt{a}-ab\sqrt{b}+2bc\sqrt{a}-2ac\sqrt{b}+c^2\sqrt{a}-c^2\sqrt{b}}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\ge0\)vì a=max{a,b,c} => \(a\ge b\)

=> \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)(1)

+) Chứng minh:\(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

Xét: \(f\left(a;b;\sqrt{ab}\right)-\frac{7}{5}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{7}{5}\)\(=\frac{\frac{a}{b}}{\frac{a}{b}+1}+\frac{2}{\sqrt{\frac{a}{b}}+1}-\frac{7}{5}\)(2)

Đặt \(\sqrt{\frac{a}{b}}=x\left(đk:x\le3\right)\)Ta có: 

(2)=\(\frac{x^2}{x^2+1}+\frac{2}{x+1}-\frac{7}{5}\)\(=\frac{5x^3+5x^2+10x^2+10-7x^3-7x^2-7x-7}{5\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{-2x^3+8x^2-7x+3}{5\left(x^2+1\right)\left(x+1\right)}=\frac{\left(3-x\right)\left(2x^2-2x+1\right)}{5\left(x^2+1\right)\left(x+1\right)}\ge0\)

=> \(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)(3)

Từ (1); (3) => \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

"=" xảy ra <=> a=3; b=1/3; c=1 và các hoán vị

15 tháng 3 2020

ĐK: \(-x^2+2x+\frac{1}{2}-m\ge0\)

\(pt\Leftrightarrow\left[{}\begin{matrix}4x-2m-\frac{1}{2}>-x^2+2x+\frac{1}{2}-m\\4x-2m-\frac{1}{2}< x^2-2x-\frac{1}{2}+m\end{matrix}\right.\)

Xét từng bpt một nhé:

\(x^2+2x-1-m>0\) (1)

Để (1) đúng với mọi x thì \(\Delta< 0\Leftrightarrow1+1+m< 0\Leftrightarrow m< -2\)

\(x^2-6x+3m>0\) (2)

Để (2) đúng với mọi x thì \(\Delta< 0\Leftrightarrow9-3m< 0\Leftrightarrow m>3\)

\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

\(\Rightarrow S=\left(-2019;-2\right)\cup\left(3;2019\right)\)

Tự đếm xem có bao nhiêu phần tử nha cậu :))