Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)
\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)
\(A=-cosx+cosx+cotx=cotx\)
\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)
\(B=2cosx-cosx=cosx\)
\(2sin\left(\frac{\pi}{4}+a\right)sin\left(\frac{\pi}{4}-a\right)=cos2a-cos\left(\frac{\pi}{2}\right)=cos2a\)
\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=-\frac{2\left(cos^2x-sin^2x\right)}{2sinx.cosx}=\frac{2cos2x}{sin2x}=-2cot2x=-\frac{2}{tan2x}\)
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
giống Nguyễn Lê Phước Thịnh nhé
Sử dụng bất đẳng thức AM-GM ta có:
\(\hept{\begin{cases}a^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{a^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}a\\b^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{b^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}b\\c^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{c^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}c\end{cases}}\)
_________________________________________________________________________________________
\(\Rightarrow\left(a^n+b^n+c^n\right)\ge n\left(\frac{a+b+c}{3}\right)^{n-1}\left(a+b+c\right)-3\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\)\(=3\left(\frac{a+b+c}{3}\right)^n\)
\(\left|\vec{AD}+\vec{AB}\right|=\left|\vec{AC}\right|=AC=a\sqrt{2}\)