Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)=>a= 2k, b= 3k , c=4k
a^2-b^2+2c^2=108 <=>(2k)^2 -(3k)^2 +2(4k)^2=108
<=>4k^2 -9k^2+2.16k^2=108
<=>4k^2-9k^2+32k^2=108
<=>k^2(4-9+32)=108
<=>27k^2=108
<=>k^2=4 <=> \(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
- k=2 =>\(\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
- k=-2 =>\(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
\(\frac{a}{5}=\frac{b}{4}\\ \Rightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\\ \Rightarrow a^2=\frac{25}{9}\\ \Rightarrow a=\frac{5}{3}\)
tự tính b nhé
b) Câu b tương tự câu a .
Nếu ko biết hỏi mình
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
a) có \(\frac{a}{5}=\frac{b}{4}\)=> \(\frac{a^2}{25}=\frac{b^2}{16}\)
áp dụng t/c dãy tỉ số bằng nhau có:
\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\)
=>\(\hept{\begin{cases}a^2=\frac{1}{9}.25\\b^2=\frac{1}{9}.16\end{cases}}\)=>\(\hept{\begin{cases}a^2=\frac{25}{9}\\b^2=\frac{16}{9}\end{cases}}\)=>\(\hept{\begin{cases}a=\frac{5}{3};\frac{-5}{3}\\b=\frac{4}{3};\frac{-4}{3}\end{cases}}\)
mà a,b cùng dấu
vậy : tự viết :))
a) a2-b2=1 <=> (a-b)(a+b)=1 (1)
\(\frac{a}{5}=\frac{b}{4}=\frac{a-b}{1}=\frac{a+b}{9}\)=> a+b=\(\frac{9b}{4}\), và a-b=\(\frac{b}{4}\)
Thay vào (1): \(\frac{9b}{4}.\frac{b}{4}=1\)<=> b2=\(\frac{16}{9}=\left(\frac{4}{3}\right)^2\)=> b=\(\frac{4}{3}^{ }\)
a=\(\frac{5}{4}.\frac{4}{3}=\frac{5}{3}\)
1) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\)(đpcm)
2) Để \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\) thì \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
\(\Leftrightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a}{2c}=\frac{3b}{3d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
3) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)(1)
Ta có: \(\frac{a^2-b^2}{c^2-d^2}\)
\(=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
4) Ta có: \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
nên \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2\cdot k^2+b^2}{d^2\cdot k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(3)
Ta có: \(\left(\frac{a+b}{c+d}\right)^2\)
\(=\left(\frac{bk+b}{dk+d}\right)^2\)
\(=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)
\(=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(4)
Từ (3) và (4) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!