Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a :b:c:d=2:3:4:5
suy ra : a/2=b/3=c/4=d/5
tính dãy các tỉ số bằng nhau mà tính
b,\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
suy ra :\(\frac{a}{2}=\frac{2.b}{2.3}=\frac{3.c}{3.4}\)áp dung tính chất dãy tỉ số bằng nhau
c,a/2=b/3
=1/5.a/2=1/5.b/3=a/10=b/15
b/5=c/4
=1/3.b/5=1/3.c/4=b/15=c/12
vậy ta có: a/10=b/15=c/12
áp dụng t/c dãy tỉ số bằng nhau
mik chỉ hướng dẫn bn thôi
chúc bạn làm tốt (tích hộ mik nha)
1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{4a}{4c}=\frac{3c}{3d}\)
Theo tín chất dãy tỉ số bằng nhau ta có:
\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)(đpcm)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=>\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)(đpcm)
Nhiều thế :( Làm 1,2 câu thôi nhé
a) \(\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\) (bị mất nét nhưng vẫn nhìn ra là số 12 nhỉ?)
b) \(\frac{-2}{5}+\frac{7}{21}=\frac{-42}{105}+\frac{35}{105}=\frac{-7}{105}=\frac{-1}{15}\)
\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có :
\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)
\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)
\(Th2:x=-3\Rightarrow y=-4\)
đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)
ta có:
\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
\(k=1\Rightarrow x=3.1=3,y=4.1=4\)
\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)
vậy x=3,y=4 hay x=-3, y=-4
2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{42}{14}=3\)
\(\frac{a}{2}=3\Rightarrow a=6\)
\(\frac{b}{3}=3\Rightarrow b=9\)
\(\frac{c}{4}=3\Rightarrow c=12\)
\(d=5=3\Rightarrow d=15\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{42}{14}=3\)
\(\Rightarrow a=6;b=9;c=12;d=15\)