Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
a) \(\frac{8}{9}=1-\frac{1}{9}\)
\(\frac{108}{109}=1-\frac{1}{109}\)
Vì \(\frac{1}{9}>\frac{1}{109}\)
Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)
Vậy \(\frac{8}{9}< \frac{108}{109}\)
b)
\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)
\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\)
\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)
a, \(\frac{x+1}{5}+\frac{x+1}{7}=\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{7}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b, \(\frac{x+4}{96}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+1}{99}\)
\(\Leftrightarrow\left(\frac{x+4}{96}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+1}{99}+1\right)\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}=\frac{x+100}{98}+\frac{x+100}{99}\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{99}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{96}+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
a) x + 1/5 + x + 1/7 = x + 1/9
<=> 1/5x + 1/5 + 1/7x + 1/7 = 1/9x + 1/9
<=> (1/5x + 1/7x) + (1/5 + 1/7) = 1/9x + 1/9
<=> 12/35x + 12/35 = 1/9x + 1/9
<=> 12/35x + 12/35 - 1/9x = 1/9
<=> 73/315x + 12/35 = 1/9
<=> 73/315x = 1/9 - 12/35
<=> 73/315x = -73/315
<=> x = 73/315 : -73/315 = -1
=> x = -1
b) làm tương tự
\(A=\frac{-\left(98^{98}+1\right)}{-\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}\)
\(B=\frac{98^{99}+1}{98^{89}+1}\)
A-1=\(\frac{98^{98}-98^{88}}{98^{88}+1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}\)
B-1=\(\frac{98^{99}-98^{89}}{98^{89}+1}=\frac{98^{89}.\left(98^{10}-1\right)}{98^{89}+1}\)
=>\(\frac{A-1}{B-1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}.\frac{98^{89}+1}{98^{89}.\left(98^{10}-1\right)}=\frac{98^{89}+1}{98.\left(98^{88}+1\right)}=\frac{98^{89}+1}{98^{89}+98}< 1\)
->A-1<B-1
->A<B
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+17}{17^{19}+17}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{17}+1}{17^{18}+1}=B\)
=> A < B
\(\frac{9^{99}-1}{-9^{98}+1}\) < \(\frac{-9^{98}-1}{9^{97+1}}\)
làm on trình bày cách giải