Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)\(=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=10\)
b, \(\frac{4}{77}+\frac{4}{165}+\frac{4}{285}\)
\(=\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}\)
\(=\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}\)
\(=\frac{1}{7}-\frac{1}{19}\)
\(=\frac{19}{133}-\frac{7}{133}=\frac{12}{133}\)
Bài 2:
\(a,\left(x+\frac{2}{3}\right).\frac{-3}{5}+\frac{4}{7}=1\frac{4}{7}.x\)
\(\Rightarrow\frac{-3}{5}x+\frac{-2}{5}+\frac{4}{7}=\frac{11}{7}.y\)
\(\Rightarrow\frac{-3}{5}x+\frac{6}{35}=\frac{11}{7}.y\)
Từ đây làm nốt
b, \(\left|5x-2\right|\le0\)
\(\Rightarrow\left|5x\right|\le2\)( x \(\ge0\))
Mà không có số x nào nhân với 5 bé hơn hoặc bằng 2
\(\Rightarrow\)x không có giá trị thỏa mãn
c đề bài sai, chỉ tìm x chứ làm gì có y
d, \(\left(x-3\right).\left(2y+1\right)=7\)
TH1:
x - 3 = 1
x = 1 + 3
x = 4
2y + 1 = 7
2y = 7 - 1 = 6
y = 6 : 2 = 3
TH2:
x - 3 = 7
x = 7 + 3 = 10
2y + 1 = 1
2y = 1 - 1 = 0
y = 0 : 2 = 0
TH3:
x - 3 = -1
x = -1 + 3
x = 2
2y+ 1 = -7
2y = -7 - 1 = -8
y = (-8) : 2 = -4
TH4:
x - 3 = -7
x = -7 + 3
x = -4
2y + 1 = -1
2y = (-1) - 1
2y = -2
y = (-2) : 2 = -1
Vậy ......
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)
a, \(\frac{17}{y}=\frac{-7}{11}\)
\(\Rightarrow17\cdot11=-7\cdot y\)
\(\Rightarrow187=-7\cdot y\)
\(\Rightarrow\frac{187}{-7}=y\)
b, \(\frac{-8}{3x-1}=\frac{4}{7}\)
\(\Rightarrow\frac{-8}{3x-1}=\frac{-8}{-14}\)
\(\Rightarrow3x-1=-14\)
\(\Rightarrow3x=-14+1\)
\(\Rightarrow3x=-13\)
\(\Rightarrow x=\frac{-13}{3}\)
c, \(\frac{x}{-3}=\frac{-3}{x}\)
\(\Rightarrow x\cdot x=-3\cdot\left(-3\right)\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x^2=\left(\pm3\right)^2\)
\(\Rightarrow x=\pm3\)
d, \(\frac{-4}{y}=\frac{x}{2}\)
\(\Rightarrow-4\cdot2=x\cdot y\)
\(\Rightarrow-8=x\cdot y\)
\(\Rightarrow x;y\inƯ\left(-8\right)=\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
ta có bảng :
x | -1 | -8 | -2 | -4 |
y | 8 | 1 | 4 | 2 |
a)\(\frac{14}{y}\)\(=\) \(\frac{-7}{11}\)
\(\Rightarrow\)\(14\cdot11=y\cdot\left(-7\right)\)
\(y=\)\(\frac{14\cdot11}{-7}\)
\(y=22\)
c) \(\frac{x}{-3}\) = \(\frac{-3}{x}\)
\(\Rightarrow\) \(x\cdot x=\left(-3\right)\cdot\left(-3\right)\)
\(\Rightarrow\)\(x^2=9\)
\(\Rightarrow\)\(x^2=9\)hoặc \(x^2=-9\)
\(TH1:\) \(x^2=9\)
\(\Rightarrow\)\(x=3\)
\(TH2:\)\(x^2=-9\)
\(\Rightarrow\)\(x=-3\)
Bài 1: Tìm x,y
a) Ta có: \(x^{10}:x^7=\frac{1}{27}\)
\(\Leftrightarrow x^3=\left(\frac{1}{3}\right)^3\)
hay \(x=\frac{1}{3}\)
Vậy: \(x=\frac{1}{3}\)
b) Ta có: \(\frac{1}{8}x-1=0.25\)
\(\Leftrightarrow\frac{1}{8}x=\frac{1}{4}+1=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{4}:\frac{1}{8}=\frac{5}{4}\cdot8=\frac{40}{4}=10\)
Vậy: x=10
c) Ta có: \(\left|2\frac{1}{2}-x\right|=4\)
\(\Leftrightarrow\left|\frac{5}{2}-x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{5}{2}-x=4\\\frac{5}{2}-x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=4-\frac{5}{2}=\frac{3}{2}\\-x=-4-\frac{5}{2}=-\frac{13}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{13}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-3}{2};\frac{13}{2}\right\}\)
d) Ta có: \(\frac{x}{6}=\frac{y}{7}\) và x+y=-39
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}=\frac{y}{7}=\frac{x+y}{6+7}=\frac{-39}{13}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{6}=-3\\\frac{y}{7}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-18\\y=-21\end{matrix}\right.\)
Vậy: (x,y)=(-18;-21)
\(\frac{7}{x}-\frac{y}{2}=\frac{1}{4};\frac{7}{x}=\frac{1}{4}+\frac{y}{2};\frac{7}{x}=\frac{1}{4}+\frac{2.y}{4};\frac{7}{x}=\frac{2.y+1}{4};\Rightarrow\left(2.y+1\right).x=28.\)CHỉ gợi ý đến thế thôi