Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x khác 1; - 1
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)
<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)
<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)
<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)
<=> \(2x=4\)
<=> x = 2 thỏa mãn.
\(ĐKXĐ:x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{24+20\left(x^2-1\right)-\left(8x-1\right)\left(x-1\right)-\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2-11x+1=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
ĐKXĐ: \(x\ne\pm1\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x-1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)
\(\Leftrightarrow24\left(1-x\right)+20\left(x+1\right)\left(x-1\right)\left(1-x\right)=\left(8x-1\right)\left(x-1\right)\left(1-x\right)\)\(-\left(12x-1\right)\left(x+1\right)\left(1-x\right)\)
\(\Leftrightarrow4-4x+20x^2-20x^3=18x^2-20x^3+2x\)
\(\Leftrightarrow4-4x+20x^2=18x^2+2x\)
\(\Leftrightarrow4-4x+20x^2-18x^2-2x=0\)
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
Bài 1:
d)ĐKXĐ: \(x\ne8\)
Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)
MTC=24(x-8)
\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)
\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)
\(\Leftrightarrow348-29x=0\)
\(\Leftrightarrow-29x+348=0\)
\(\Leftrightarrow x=\frac{-348}{-29}=12\)
Vậy: x=12
e) ĐKXĐ: \(x\ne\pm1\)
Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)
MTC=4(x+1)(x-1)
\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)
\(\Leftrightarrow20x+4=0\)
\(\Leftrightarrow20x=-4\)
\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)
Vậy: x không có giá trị
g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)
MTC=2(x+1)
\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)
\(\Leftrightarrow2-x+1=0\)
\(\Leftrightarrow1-x=0\)
\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)
Vậy: x không có giá trị
ĐKXĐ: x khác +-1
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
<=> \(\frac{6}{\left(x-1\right)\left(x+1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)
<=> 24(1 - x) + 20(x + 1)(x - 1)(1 - x) = (8x - 1)(x - 1)(1 - x) - (12x - 1)(x + 1)(x - 1)
<=> 4 - 4x + 20x^2 = 18x^2 + 2x
<=> 4 - 4x + 20x^2 - 18x^2 + 2x = 0
<=> 4 - 6x + 2x^2 = 0
<=> 2(2 - 3x + x^2) = 0
<=> 2(x - 1)(x - 2) = 0
<=> x - 1 = 0 hoặc x - 2 = 0
<=> x = 1 (ktm) hoặc x = 2 (tm)
=> x = 2