Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ta có: 333<3333; 444<4444
=> 333444<33334444
Bài 2:
\(A=\frac{21^5}{81}=\frac{\left(3.7\right)^5}{3^4}=\frac{3^5.7^5}{3^4}=3.7^5=50421\)
\(B=\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{\left(3.0,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{3^5.\left(0,5\right)^5}=\frac{1}{3^2}=\frac{1}{9}\)
\(C=2^2.\frac{1}{128}.45.2^{-6}=\frac{2^2.45}{128.64}=\frac{2^2.45}{2^7.2^6}=\frac{45}{2^{11}}=\frac{45}{2048}\)
\(D=\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+2^2.3^3+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}\)\(=3^3.\left(-1\right)=-27\)
1. \(\frac{\left(0,6\right)^5}{\left(0.2\right)^5}=\left(\frac{0.6}{0.2}\right)^5=\left(3\right)^5=243\)
2.\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6^2\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^2.3}{-13}\)
\(\Leftrightarrow\frac{6^2.9+3^2.3}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)
Đặt S = 1x2 + 2x3 + 3x4 + 4x5 + ... + 98x99
3S = 1x2x3 + 2x3(4-1) + 3x4x(5-2) + 4x5x(6-3) ... + 98x99x(100 - 97)
3S = 1x2x3 + 2x3x4 - 1x3x4 + 3x4x5 - 2x3x4 + ... + 98x99x100 - 97x98x99
3S = 98x99x100 => S = 1/3x98x99x100.
Thay vào đề bài ta được:
\(\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{12}{\frac{6}{7}}:\frac{-3}{2}\Leftrightarrow\frac{33\cdot100\cdot x}{275}=-\frac{12}{\frac{6}{7}}\cdot\frac{2}{3}\)
\(\Leftrightarrow12x=-12\cdot\frac{7}{6}\cdot\frac{2}{3}\Leftrightarrow x=-\frac{7}{9}\)
/i 4 U 4 nothing but if U are nothing, nothing will come to U again. /i
63 + 3 . 62 + 33 / -13
= 23 . 33 + 3 . 22 . 32 + 33 / -13
= 33 . 8 + 33 . 4 + 33 / -13
= 33 . (8 + 4 + 1) / -13
= 27 . 13 / -13
= -27
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=-3^3=-27\)
\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
a, \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{4+6}}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b,\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}\)
c, \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}\)
d, \(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(2.3\right)^3+3\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)
\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^9\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3=27\)
\(\frac{6^3+3\cdot6^2+3^3}{-13}\)
\(=\frac{2^3\cdot3^3+3\cdot3^2\cdot2^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{27\cdot13}{-13}\)
\(=-27\)
\(=\frac{-711}{13}\)
kết quả là :
\(\frac{-711}{13}\)
đs...