Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{21}{3}=7\)\(\Rightarrow\hept{\begin{cases}x=7.5=35\\y=2.7=14\end{cases}}\)
c,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y}{4+3}=\frac{14}{7}=2\)\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.2=4\end{cases}}\)
1) Chỉ tìm được Max thôi nhé
a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)
b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)
2) Thì chỉ tìm được GTNN thôi nhé
a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)
Vậy Min(A) = 14/3 khi x = -7/5
b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)
Vậy Min(B) = 4/5 khi x = 4/3
a) ta có : \(\frac{x-2}{x-2}=1\Rightarrow1=\frac{x+4}{x+7}\)\(\Rightarrow x+4=x+7\Rightarrow x\in\varnothing\)
b)\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{1}{5}.\frac{x}{3}=\frac{1}{5}.\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{1}{4}.\frac{y}{5}=\frac{1}{4}.\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2}{2}.\frac{x}{15}=\frac{3}{3}.\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
áp dụng t/c day t/s = nhau
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x-3y+z}{30-60+28}=\frac{6}{-2}=-3\)
\(\frac{x}{15}=-3\Rightarrow x=-45\)
\(\frac{y}{20}=-3\Rightarrow y=-60\)
\(\frac{z}{28}=-3\Rightarrow z=-84\)
c)đặt k rồi giải típ ik mik lười quá
a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\)
\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)
Nên x + 1 = 0
=> x = -1
\(\frac{56}{x}=\frac{14}{21}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{56.3}{2}=84\)
\(\frac{56}{x}=\frac{14}{21}\)
\(\Leftrightarrow x=84\)
Vậy x=84