\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+....+\frac{181}{9.10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+...+\frac{181}{9.10}\)

=\(\frac{4+1}{2}+\frac{12+1}{6}+\frac{24+1}{12}+...+\frac{180+1}{90}\)

=\(2+\frac{1}{1.2}+2+\frac{1}{2.3}+2+\frac{1}{3.4}+...+2+\frac{1}{9.10}\)

=\(18+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

=\(9-\frac{1}{10}\)

=\(\frac{189}{10}\)

29 tháng 6 2015

\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+\frac{41}{4.5}+...+\frac{181}{9.10}\) \(=\frac{4+1}{2}+\frac{12+1}{6}+\frac{24+1}{12}+\frac{40+1}{20}+...+\frac{180+1}{90}\) 

                                                                        \(=2+\frac{1}{1.2}+2+\frac{1}{2.3}+2+\frac{1}{3.4}+2+\frac{1}{4.5}+...+2+\frac{1}{9.10}\) 

\(=18+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=19-\frac{1}{10}\)

\(=\frac{189}{10}\)

25 tháng 12 2016

Hỏi thật không

27 tháng 7 2015

\(A=\frac{4+1}{1.2}+\frac{24+1}{3.4}+\frac{40+1}{4.5}+...+\frac{180+1}{9.10}\)

\(A=\left(\frac{4}{1.2}+\frac{24}{3.4}+\frac{40}{4.5}+...+\frac{180}{9.10}\right)+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(A=\left(2+2+2+...+2\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=2.8+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{10}\right)=16+\frac{22}{30}=16\frac{11}{15}\)

1 tháng 10 2016

Ta có 

\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=2-\frac{1}{10}\)

\(=\frac{19}{10}\)

Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)

15 tháng 2 2018

Ta có : 

\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)

\(=\)\(\frac{3}{1.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\)\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{100}{100}-\frac{1}{100}\)

\(=\)\(\frac{100-1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy ...

Đặt A=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)

A=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.........+\frac{19}{9^2.10^2}\)

A=\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...........+\frac{19}{81.100}\)

A=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-...............+\frac{1}{81}-\frac{1}{100}\)

A=\(\frac{1}{1}-\frac{1}{100}\)

A=\(\frac{99}{100}\)

Vậy tổng của \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)là \(\frac{99}{100}\)

Chúc bn học tốt

13 tháng 11 2016

Ta co \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^{10}}\)

=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

=\(\frac{1}{1^2}-\frac{1}{10^2}\)

=\(\frac{99}{100}\) < 1

15 tháng 7 2018

\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)

\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)

\(=-\frac{9}{10}+\frac{1}{90}\)

= ...

bn tự tính nha!
 

3 tháng 12 2019

Bài làm

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}\)

\(=\frac{9}{10}\)

Vậy giá trị của biểu thức trên bằng \(\frac{9}{10}\).

# Học tốt #

3 tháng 12 2019

\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{10-9}{9.10}=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{10}{9.10}-\frac{9}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)