Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x^2+4}{8}-1+\frac{x^2+3}{7}-1+\frac{x^2+2}{6}-1=\frac{x^2+1}{5}-1+\frac{x^2}{4}-1+\frac{x^2-1}{3}-1\)
\(\Leftrightarrow\frac{x^2-4}{8}+\frac{x^2-4}{7}+\frac{x^2-4}{6}-\frac{x^2-4}{5}-\frac{x^2-4}{4}-\frac{x^2-4}{3}=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)
\(\Leftrightarrow x^2-4=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow3x=0\)
=> x=0 (tmđk)
Vậy x=0
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x\cdot2}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
1)\(ĐKXĐ:x\ne2;x\ne-2\)
đầu bài..
.\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=x\left(3x-2\right)+1\)
\(\Leftrightarrow-6x^2-11x+2+9x^2-14x-8=3x^2-2x+1\)
\(\Leftrightarrow-23x=7\Leftrightarrow x=-\frac{7}{23}\)(nhận)
Vậy...........
2).......\(ĐKXĐ:x\ne2;x\ne7\)
\(\Rightarrow\left(x+1\right)\left(x-7\right)=x-2\)
\(\Leftrightarrow x^2-6x-7=x-2\)
\(\Leftrightarrow x^2-7x-5=0\)..............
Vậy........
3)ĐKXĐ:\(x\ne1\)
.........\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\Leftrightarrow x=\frac{7}{19}\)(nhận)
4)ĐKXĐ:\(x\ne-1\)
.........\(\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\)
\(\Leftrightarrow15x=5\Leftrightarrow x=\frac{1}{3}\)(nhận)
Vậy...................
\(ĐKXĐ:x\ne\pm1\)
\(\frac{4}{x^3-x^2-x+1}-\frac{3}{1-x^2}=\frac{1}{x+1}\)
\(\Rightarrow\frac{4}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)
\(\Rightarrow\frac{4}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)
Đặt\(x+1=u;x-1=v\)
Phương trình trở thành \(\frac{4}{uv^2}+\frac{3}{uv}=\frac{1}{u}\)
\(\Rightarrow\frac{4}{uv^2}+\frac{3v}{uv^2}=\frac{v^2}{uv^2}\)
\(\Rightarrow4+3v=v^2\Leftrightarrow v^2-3x-4=0\)
Ta có \(\Delta=\left(-3\right)^2+4.1.4=25,\sqrt{\Delta}=5\)
\(\Rightarrow\orbr{\begin{cases}v=\frac{3+5}{2}=4\\v=\frac{3-5}{2}=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=4\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=0\end{cases}}\)
Vậy tập nghiệm S = {0;5}