Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^7.3^4.9^6}{6^{13}}=\frac{\left(2^2\right)^7.3^4.\left(3^2\right)^6}{\left(2.3\right)^{13}}=\frac{2^{14}.3^4.3^{12}}{2^{13}.3^{13}}=\frac{2.2^{13}.3^{13}.3^3}{2^{13}.3^{13}}=2.3^3=2.27=54\)
a, \(4^7.3^4.9^6:6^{13}\)
\(=\left(2^{14}.3^4.3^{12}\right):\left(2^{13}.3^{13}\right)\)
\(=2^{14}:2^{13}.3^{16}:3^{13}\)
\(=2.3^3=54\)
b, \(2^3.3^2-5^{16}:25^7\)
\(=72-5^{16}:5^{14}\)
\(=72-5^2=47\)
4^7.3^4.9^6:6^13=4^7.3^4.(3^2)^6:6^13
=4^7.3^16:3^13.2^13
=(2^2)^7.3^16:3^13.2^13
=2^14.3^16:3^13.2^13
=2.3^3
=54
a) \(\dfrac{11\cdot8-11\cdot3}{17-6}\)
\(=\dfrac{11\cdot\left(8-3\right)}{11}=5\)
b) \(\dfrac{24-12\cdot13}{12+4\cdot9}\)
\(=\dfrac{12\cdot\left(2-13\right)}{12\left(1+3\right)}=\dfrac{-11}{4}\)
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
\(=\frac{2^{18}.2^7.3^{14}.3^3+3^{15}.2^{15}}{2^{10}.2^{15}.3^{15}+3^{14}.3.5.2^{26}}=\frac{2^{25}.3^{17}+3^{15}.2^{15}}{2^{25}.3^{15}+3^{15}.2^{26}.5}=\frac{2^{15}.3^{15}\left(2^{10}.3^2+1\right)}{2^{25}.3^{15}\left(1+2.5\right)}\)
\(=\frac{2^{10}.3^2+1}{2^{10}\left(1+2.5\right)}=\frac{2^{10}.3^2+1}{11.2^{10}}\)
Ừm đáp án này:
2^14 . 3^4 . 9^6 / 6^13
= (2^2)^7 . 3^4 . (3^2)6 / (2.3)^13
= 2^14 . 3^4 . 3^12 / 2^13 . 3^13
= 2 . 3^3 . 1 / 1 . 1 . 1
= 2 . 27
= 54
Bạn ơi dấu / thay cho dấu bằng còn ^ thay cho mũ nhé
Hơi rối mắt tí :3