\(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2024

   \(\dfrac{3}{2.6}\) + \(\dfrac{3}{6.10}\) + \(\dfrac{3}{10.14}\)

=  \(\dfrac{3}{4}\).(\(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\))

\(\dfrac{3}{4}\).(\(\dfrac{1}{2}-\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{14}\))

\(\dfrac{3}{4}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{14}\))

\(\dfrac{3}{4}\)\(\dfrac{3}{7}\)

\(\dfrac{9}{28}\)

14 tháng 3 2024

B = \(\dfrac{4}{1.3.5}\) + \(\dfrac{4}{3.5.7}\) + \(\dfrac{4}{5.7.9}\)

B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{3.5}\) + \(\dfrac{1}{3.5}\) - \(\dfrac{1}{5.7}\) + \(\dfrac{1}{5.7}\) - \(\dfrac{1}{7.9}\)

B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{7.9}\)

B = \(\dfrac{1}{3}\) - \(\dfrac{1}{63}\)

B =  \(\dfrac{20}{63}\)

20 tháng 3 2016

$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$

5 tháng 4 2019

chứng minh B làm sao z

25 tháng 4 2017

\(\frac{C}{9}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{21.23.25}+\frac{4}{23.25.27}.\)

\(\frac{C}{9}=\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{25-21}{21.23.25}+\frac{27-23}{23.25.27}\)

\(\frac{C}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{21.23}-\frac{1}{23.25}+\frac{1}{23.25}-\frac{1}{25.27}\)

\(\frac{C}{9}=\frac{1}{3}-\frac{1}{25.27}\Rightarrow C=\frac{9\left(25.9-1\right)}{25.27}=\frac{25.9-1}{25.3}=3-\frac{1}{25.3}< 3\)

21 tháng 8 2017

=1/1.3-1/3.5+1/3.5-1/5.7+...+1/99.11-1/11.13

=1/1.3-1/11.13

=1/3-1/143

=140/429

26 tháng 6 2015

Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)

\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}\)

\(\Rightarrow B<3\)

28 tháng 2 2017

\(A=\dfrac{2.6.10+6.10.14+10.14.18+..+194.198.202}{1.3.5+3.5.7+5.7.9+..+97.99.101}\)

\(=\dfrac{2^3.1.3.5+2^3.3.5.7+2^3.5.7.9+...+2^3.97.99.101}{1.3.5+3.5.7+7.9.11+...+97.99.101}\)

\(=\dfrac{2^3.\left(1.3.5+3.5.7+7.9.11+...+97.99.101\right)}{1.3.5+3.5.7+5.7.9+...+97.99.101}=2^3=8\)