\(\frac{3}{x^2+3x+2}+\frac{2}{x^2-x+3}=\frac{14}{x^2+11x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:
ĐKXĐ: $x\neq -1;-2;0;-11$

PT \(\Leftrightarrow \frac{3}{x^2+3x+2}-\frac{6}{x^2+11x}+\frac{2}{x^2-x+3}-\frac{8}{x^2+11x}=0\)

\(\Leftrightarrow \frac{-3x^2+15x-12}{(x^2+3x+2)(x^2+11x)}+\frac{-6x^2+30x-24}{(x^2-x+3)(x^2+11x)}=0\)

\(\Leftrightarrow \frac{-3x^2+15x-12}{x^2+11x}\left(\frac{1}{x^2+3x+2}+\frac{2}{x^2-x+3}\right)=0\)

\(\Leftrightarrow \frac{-3x^2+15x-12}{x^2+11x}.\frac{3x^2+5x+7}{(x^2+3x+2)(x^2-x+3)}=0\)

\(\Rightarrow (-3x^2+15x-12)(3x^2+5x+7)=0\)

\(\Rightarrow x=1\) hoặc $x=4$ (thỏa mãn)

Vậy.....

19 tháng 3 2020

Giúp mình hoàn thành các bài tập này với ạ.Cảm ơn rất nhìuuuuuuu @@@

19 tháng 3 2020

@Akai Haruma

2 tháng 2 2016

Hỏi đáp Toán

2 tháng 2 2016

Hỏi đáp Toán

4 tháng 2 2016

nhiều quá bạn ơi , bạn k biết câu nào mình giải zúp cho 

4 tháng 2 2016

hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn

NV
16 tháng 5 2020

\(x-\frac{11x^2-5x+6}{x^2+5x+6}>0\)

\(\Leftrightarrow\frac{x^3-6x^2+11x-6}{x^2+5x+6}>0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)\left(x-3\right)}{\left(x+2\right)\left(x+3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\1< x< 2\\-3< x< -2\end{matrix}\right.\)

b/ \(\frac{2-x}{x^3+x^2}-\frac{1-2x}{x^3-3x^2}>0\)

\(\Leftrightarrow\frac{\left(2-x\right)\left(x+1\right)-\left(1-2x\right)\left(x-3\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-5\right)}{x^2\left(x+1\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>5\\1< x< 3\end{matrix}\right.\)

c/ \(\left|x^2-x-1\right|\le x-1\)

Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

Với \(x\ge1\) hai vế ko âm, bình phương:

\(\left(x^2-x-1\right)^2\le\left(x-1\right)^2\)

\(\Leftrightarrow\left(x^2-x-1\right)^2-\left(x-1\right)^2\le0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2\right)\le0\) \(\Rightarrow\sqrt{2}\le x\le2\)

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm