Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)
A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{100}\)
A : 3 = \(\frac{99}{100}\)
A = \(\frac{297}{100}\)
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
ko can phai tinh ma la phan tich a vua co 1/15 vua co 1/10 thi co the so sanh ok?
Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!
m = 1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
m = 1/3-1/99=32/99
Sorry chị em ko làm đc câu b vì em mới học lớp 4
k em ha
a) \(M=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{99}\)
\(\Rightarrow M=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
b) \(N=\frac{3}{5\times7}+\frac{3}{7\times9}+\frac{3}{9\times11}+...+\frac{3}{197\times199}\)
\(\Rightarrow N=3\times\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{197\times199}\right)\)
\(\Rightarrow N=3\times\left[2\times\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{197\times199}\right)\right]\)
\(\Rightarrow N=3\times\left(\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+...+\frac{2}{197\times199}\right)\)
\(\Rightarrow N=3\times\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right)\)
\(\Rightarrow N=3\times\left(\frac{1}{5}-\frac{1}{199}\right)\)
\(\Rightarrow N=3\times\frac{194}{995}=\frac{582}{995}\)
----Chúc em học giỏi !----
\(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}=\frac{1}{7}-\frac{1}{100}=\frac{93}{700}\)
\(\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{97\cdot100}\)
\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}=\frac{1}{7}-\frac{1}{100}=\frac{93}{700}\)