Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^6.\left(3^2.5\right)^4-\left(3.5\right)^3:5^9}{\left(3^3\right)^4.\left(5^2\right)^3+\left(5.3^2\right)^6}\) = \(\frac{3^{14}.5^4-3^3:5^6}{3^{12}.5^6+5^6.3^{12}}\) = \(\frac{3^{14}.5^{10}-3^3}{3^{12}.5^{12}+5^{12}.3^{ }^{12}^{ }}=\frac{3^{11}.5^{10}-1}{2.3^9.5^{12}}\)
\(E=\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}\)
\(E=\frac{3^6.3^8.5^4-3^{13}.5^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)
\(E=\frac{3^{14}.5^4-3^{13}.5^4}{3^{12}.5^6\left(1+1\right)}\)
\(E=\frac{3^{13}.5^4\left(3-1\right)}{3^{12}.5^6.2}\)
\(E=\frac{3}{25}\)
a) \(T=\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
\(=\frac{\left(3^2\right)^{14}\times25^6\times\left(2^3\right)^7}{\left(2\times3^2\right)^{12}\times\left(25^2\right)^3\times\left(3\times2^3\right)^3}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{12}\times3^{24}\times25^6\times3^3\times2^9}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{\left(2^{12}\times2^9\right)\times\left(3^{24}\times3^3\right)\times25^6}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{21}\times3^{27}\times25^6}=3\)
b) \(A=\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
\(=\frac{5\times\left(2^2\right)^{15}\times\left(3^2\right)^9-2^2\times3^{20}\times\left(2^3\right)^9}{5\times2^9\times\left(2\times3\right)^{19}-7\times2^{29}\times\left(3^3\right)^6}\)
\(=\frac{5\times2^{30}\times3^{18}-2^2\times3^{20}\times2^{27}}{5\times2^9\times2^{19}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{5\times2^{30}\times3^{18}-2^{29}\times3^{20}}{5\times2^{28}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{2^{29}\times3^{18}\times\left(5\times2-3^2\right)}{2^{28}\times3^{18}\times\left(5\times3-7\times2\right)}\)
\(=\frac{2\times\left(10-9\right)}{15-14}=\frac{2\times1}{1}=2\)