Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
\(3A=\frac{6}{3\times\left(3+6\right)}+\frac{15}{9\times\left(9+15\right)}+...+\frac{39}{84\times\left(84+39\right)}\)
\(=\frac{1}{3}-\frac{1}{9}+\frac{1}{9}-\frac{1}{24}+...+\frac{1}{84}-\frac{1}{123}=\frac{1}{3}-\frac{1}{123}=\frac{40}{123}\)
\(\Rightarrow A=\frac{40}{3.123}=\frac{40}{369}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{40}{55}=\frac{3}{11}\)
\(x=\frac{3}{11}+\frac{40}{55}\)
\(x=\frac{55}{55}=1\)
nha.
\(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}\)
\(=\frac{13}{39}-\frac{3}{39}=\frac{13-3}{39}=\frac{10}{39}\)
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+.....+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{97.101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.....+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}=\frac{25}{101}\)
\(\frac{4}{3x7}\)+ \(\frac{5}{7x12}\)+ \(\frac{1}{12x13}\)+ \(\frac{7}{13x20}\)+ \(\frac{3}{20x23}\)
= \(\frac{4}{3}+5\)+\(1+7+\frac{3}{13}\)
=\(4+5+1+7+\frac{1}{13}\)
=\(17+\frac{1}{13}\)
=\(\frac{17}{1}+\frac{1}{13}=\frac{221+1}{13}=\frac{222}{13}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(=\frac{3}{4}\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{41.45}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=\frac{3}{4}\times\frac{8}{45}\)
\(=\frac{2}{15}\)
giải giùm đi