Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x∉{-5;5}
Ta có: \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
\(\Leftrightarrow\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}-\frac{7}{6\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{9\left(x+5\right)}{12\left(x-5\right)\left(x+5\right)}-\frac{90}{12\left(x-5\right)\left(x+5\right)}-\frac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow9\left(x+5\right)-90-14\left(x-5\right)=0\)
\(\Leftrightarrow9x+45-90-14x+70=0\)
\(\Leftrightarrow-5x+25=0\)
\(\Leftrightarrow-5x=-25\)
hay x=5(ktm)
Vậy: x∈∅
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
a) Đề ( \(x\ne\pm1\))
>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)
Vậy \(S=\varnothing\)
b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)
\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)
Vậy \(S=\left\{\frac{20}{3}\right\}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)đkxđ \(x\ne\pm5\)
\(\Leftrightarrow45+9x-90-14x+70=0\)
\(\Leftrightarrow25-5x=0\)
\(\Leftrightarrow-5\left(x-5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\left(\inđkxđ\right)\)
\(\Leftrightarrow x\in\varnothing\)
0 đấy làm rồi