Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.....\frac{99.101}{100^2}\)
\(=\frac{1.3.2.4.3.5.....99.101}{2.2.3.3.4.4.....100.100}\)
\(=\frac{1.2.3.....99}{2.3.4.....100}.\frac{3.4.5.....101}{2.3.4.....100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
Ủng hộ mk nha,chúc bn học tốt!!!
3/4.8/9.15/16.....9999/10000
=1.3/2^2.2.4/3^2.3.5/4^2....99.101/100^2
=1.3/2.2.2.4/3.3.3.5/4.4....99.101/100.100
=(1.2.3...99/2.3.4...100).(3.4.5...101/2.3.4...100)
=1/100.101/2=101/200
tách trên tử thành 2 stn hon kem nhau 2 dvi o duoi mau la binh phuong cua mot so
\(C=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(C=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)
\(C=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(C=\frac{1}{100}\cdot\frac{101}{2}\)
\(C=\frac{101}{200}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x......x\frac{9999}{10000}\)
\(C=\frac{1.3}{2^2}x\frac{2.4}{3^2}x\frac{3.5}{4^2}x....x\frac{99.101}{100^2}\)
\(C=\frac{1.3.2.4.3.5.......99.101}{2^2.3^2.4^2.......100^2}\)
\(C=\frac{1.2.3.......99}{2.3.4....100}x\frac{3.4.5.....101}{2.3.4......100}\)
\(C=\frac{1}{100}.\frac{101}{2}=\frac{1.101}{100.2}=\frac{101}{200}\)
Ủng hộ mk nha!!!!
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}=\frac{3.8.15...9999}{4.9.16...10000}=\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}=\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(\frac{1.101}{100.2}=\frac{101}{200}\)
Ta có: \(\frac{3}{4}=1-\frac{1}{4}=1-\frac{1}{2^2}\); \(\frac{8}{9}=1-\frac{1}{9}=1-\frac{1}{3^2}\)
\(\frac{15}{16}=1-\frac{1}{16}=1-\frac{1}{4^2}\); ...; \(\frac{9999}{10000}=1-\frac{1}{10000}=1-\frac{1}{100^2}\)
=> \(C=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
=> \(C=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)=99-B\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=> \(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
=> A > 99-1 = 98
=> B > 98
a)\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\)\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}=\frac{101}{2.100}=\frac{101}{200}\)
b)\(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{3599}{3600}=\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.6}.....\frac{59.61}{60.60}=\frac{2.61}{60}=\frac{61}{30}\)
B=$\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{9999}{10000}=?$34 .89 .1516 .2425 ...999910000 =?