Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) x=-2 nha
d) =\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+......+\(\frac{1}{11.12}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{11}\)-\(\frac{1}{12}\)
=\(\frac{1}{5}\)-\(\frac{1}{12}\)= \(\frac{7}{60}\)
mình biến đởi phần trong |......| rồi bạn thay vào nha
1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132
=1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 +1/ 10.11
=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11
=1/5 - 1/11=11/55 - 5/55 =6/ 55
thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha
chúc hok tốt
=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3
=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3
=>(1/5-1/12)-x=2/3
=>7/60-x=2/3
=>x=7/60-2/3
=>x=-11/20
\(\Leftrightarrow\)\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)+\(\frac{1}{5}\)-....+\(\frac{1}{10}\)=x-\(\frac{113}{260}\)
\(\Leftrightarrow\)x-\(\frac{113}{260}\)=\(\frac{1}{10}\)
\(\Leftrightarrow\)x=\(\frac{139}{260}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Ta có:
A = \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
Bạn xem lời giải của mình nhé:
Giải:
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)
Chúc bạn học tốt!
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(A=\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{5}...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
A = \(\frac{1}{5.6}+\frac{1}{6.7}+...+\)\(\frac{1}{10.11}+\frac{1}{11.12}\)
A = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\)\(\frac{1}{11}-\frac{1}{12}\)
A = \(\frac{1}{5}-\frac{1}{12}\)
A = \(\frac{7}{60}\)
\(\frac{3}{5.6}+\frac{3}{6.7}+......+\frac{3}{11.12}=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{11.12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{11}-\frac{1}{12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5}-\frac{1}{12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\frac{7}{60}=\frac{1}{6}X\)
\(\Rightarrow\frac{21}{60}=\frac{1}{6}X\)
\(\Rightarrow X=\frac{21}{60}\div\frac{1}{6}=\frac{21}{10}\)
Vậy \(X=\frac{21}{10}\)