\(\frac{3}{2x^2+2x}\)\(+\frac{2x-1}{x^2-1}\)=?

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

3/(2x2+2x)\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}=\frac{3\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}+\frac{\left(2x-1\right)\left(2x\right)}{2x\left(x-1\right)\left(x+1\right)}=\frac{3x-3+4x^2-2x}{2x\left(x-1\right)\left(x+1\right)}=\frac{4x^2-x+3}{2x\left(x-1\right)\left(x=1\right)}\)

16 tháng 12 2018

\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)

\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)

\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)

\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)

\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)

\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)

\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)

16 tháng 2 2017

c) \(\frac{x-3}{x-2}+\frac{x-2}{x-4}=1\) đặt x-2 =t " cho bé hệ số lại

ĐK : \(\left\{\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t\ne0\\t\ne-2\end{matrix}\right.\)

\(\frac{t-1}{t}=\frac{t}{t-2}\Leftrightarrow\left(t-1\right)\left(t-2\right)=t^2\Leftrightarrow t^2-3t+2=t^2\Rightarrow-3t=-2\)

\(t=\frac{2}{3}\Rightarrow x=2+\frac{2}{3}=\frac{8}{3}\)

20 tháng 2 2017

a) \(A=\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3x}\) xem lại đề thấy cái mẫu VP vô duyên thế!

b) \(B=\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\) MSC=(x^3-1)

\(B=\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(4x^2-1\right)}{MSC}=\frac{\left(2x^2+2x+2\right)+\left(2x^2+x-3\right)-4x^2+1}{MSC}=0\)

\(B=0\Leftrightarrow\frac{3x}{MSC}=0=>x=0\) thảo mãn đk x khác 1

Kết luận: x=0 là nghiệm duy nhất.

29 tháng 4 2019

Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?

a. \(x+8>3x-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow-x\le2\)

\(\Leftrightarrow x\ge2\)

c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)

d. \(2\left(3x-1\right)-2x< 2x+1\)

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow2x< 3\)

\(\Leftrightarrow x< \frac{3}{2}\)

e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)

f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)

g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow2x+2>2x-1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-25\)

\(\Leftrightarrow x>-\frac{25}{2}\)

i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow x+5-4x-2\le3x+9\)

\(\Leftrightarrow-6x\le6\)

\(\Leftrightarrow x\ge-1\)

j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow10x+8-2x+1\ge48\)

\(\Leftrightarrow8x\ge39\)

\(\Leftrightarrow x\ge\frac{39}{8}\)

30 tháng 4 2019

Bạn tự biểu diễn nghiệm trên trục số nhé!

a) \(x+8>3x-1\)

\(\Leftrightarrow x-3x>-8-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b) 3x − (2x+5) ≤ (2x−3)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow3x-2x+2x\le5-3\)

\(\Leftrightarrow3x\le2\)

\(\Leftrightarrow x\le\frac{2}{3}\)

c) (x − 3) (x + 3) < x (x + 2) + 3

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow x^2-x^2+2x< 9+3\)

\(\Leftrightarrow2x< 12\)

\(\Leftrightarrow x< 6\)

d) 2 (3x − 1) − 2x < 2x + 1

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow6x-2x+2x< 2+1\)

\(\Leftrightarrow6x< 3\)

\(\Leftrightarrow x< \frac{3}{6}\)

e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-6x+5x>-9+10\)

\(\Leftrightarrow-x>1\)

\(\Leftrightarrow x< -1\)

f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow x\ge0\)

g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)

\(\Leftrightarrow2x+2>2x+1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-21\)

\(\Leftrightarrow x>\frac{-21}{2}\)

i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)

\(\Leftrightarrow x+5-4x+2\le3x+9\)

\(\Leftrightarrow-3x-x+4x\le9-5-2\)

\(\Leftrightarrow x\le2\)

j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)

\(\Leftrightarrow10x+8-2x-1\ge48\)

\(\Leftrightarrow10x-2x\ge48-8+1\)

\(\Leftrightarrow8x\ge41\)

\(\Leftrightarrow x\ge\frac{41}{8}\)

Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^

Bài 1:

ĐKXĐ: x≠1

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 2:

ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)

Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(tm)

Vậy: x=-4

Bài 3:

ĐKXĐ: x≠1; x≠-1

Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow2x\left(-3x+5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)

Bài 4:

ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow13x=1\)

hay \(x=\frac{1}{13}\)(tm)

Vậy: \(x=\frac{1}{13}\)

Bài 5:

ĐKXĐ: x≠1; x≠-2

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)

\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)

\(\Leftrightarrow x+2-7x+7-3=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow-6\left(x-1\right)=0\)

Vì -6≠0

nên x-1=0

hay x=1(ktm)

Vậy: x∈∅

Bài 6:

ĐKXĐ: x≠4; x≠2

Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 7:

ĐKXĐ: x≠1; x≠-2; x≠-1

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)

\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)

\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)

\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)

\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)

25 tháng 3 2020

\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)

Còn lại tương tự mà làm nhé!

25 tháng 2 2020

1) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)

\(=\frac{-4x^2+8x-4}{-4x^3+4x^2+4x-4}\)

\(=\frac{-x^2+2x-1}{-x^3+x^2+x-1}\)

\(=\frac{\left(-x+1\right)\left(x-1\right)}{\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(=\frac{1}{x+1}\)

2) \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)

\(=\frac{-16x^3+16x^2-4x}{-16x^4+16x^3-4x^2}\)

\(=\frac{-16x^2+16x-4}{-16x^3+16x^2-4x}\)

\(=\frac{-4x^2+4x-1}{-4x^3+4x^2-x}\)

\(=\frac{\left(-2x+1\right)\left(2x-1\right)}{x\left(-2x+1\right)\left(2x-1\right)}\)

\(=\frac{1}{x}\)

10 tháng 4 2020

Bài làm

j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)

\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)

\(\Rightarrow3x+12+5x-2=4x-16\)

\(\Leftrightarrow4x=-26\)

<=> \(x=-\frac{13}{2}\)

Vậy x = -13/2 là nghiệm phương trình.

l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)

\(\Leftrightarrow4x-4-15x-6=24x\)

\(\Leftrightarrow-35x=10\)

\(\Leftrightarrow x=-\frac{2}{7}\)

Vậy x = -2/7 là nghiệm phương trình.

10 tháng 4 2020

Bài làm

2 - x = 3x + 1

<=> - x - 3x = -2 + 1

<=> -4x = -1

<=> x = 1/4

Vậy x = 1/4 là nghiệm phương trình.

4x + 7( x - 2 ) = -9x + 5

<=> 4x + 7x - 14 = -9x + 5

<=> 4x + 7x + 9x = 14 + 5

<=> 20x = 19

<=> x = 19/20

Vậy x = 19/20 là nghiệm phương trình.

5x - 2( 3x - 5 ) = 7x + 11

<=> 5x - 6x + 10 = 7x + 11

<=> 5x - 6x - 7x = 11 - 10

<=> -8x = -21

<=> x = 21/8

Vậy x = 21/8 là nghiệm phương trình.

( 5x + 2 )( x - 7 ) = 0

<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)

Vậy tập nghiệm phương trình S = { -2/5; 7 }

2x( x - 5 ) + 3( x - 5 ) = 0

<=> ( 2x + 3 )( x - 5 ) = 0

<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)

Vậy tập nghiệm phương trìh S = { -3/2; 5 }

\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)

\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)

\(\Leftrightarrow-12x+30=45x-27\)

\(\Leftrightarrow-57x=-57\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)

\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)

\(\Leftrightarrow2x-6x-3=5x\)

\(\Leftrightarrow-9x=3\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy x = -1/3 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow2x-6x-3=x-6x\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy x = 3/2 là nghiệm phương trình.

\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1

<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )

Vậy phương trình trên vô nghiệm.

# Học tốt #

a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

27 tháng 2 2020

1. \(\frac{3x-7}{5}=\frac{2x-1}{3}\)

<=> 3(3x-7)=5(2x-1)

<=> 9x-21=10x-5

<=> -21+5=10x-9x

<=> x=-16

2. \(\frac{3x-7}{2}+\frac{2x-1}{3}=-16\)

<=> \(\frac{3\left(3x-7\right)}{6}+\frac{2\left(2x-1\right)}{6}=\frac{-96}{6}\)

=> 9x-21+4x-2=-96

<=> 13x-23=-96

<=> 13x=-73

<=> x=\(\frac{-73}{13}\)

3. \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)

<=> \(\frac{15x}{15}-\frac{5\left(x+1\right)}{15}=\frac{3\left(2x+1\right)}{15}\)

=> 15x-5x-5=6x+3

<=> 15x-5x-6x=3+5

<=> 4x=8

<=> x=2

4. \(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5-\left(5-2x\right)}{6}\)

<=>\(\frac{7-3x}{12}+\frac{9}{12}=\frac{24\left(x-2\right)}{12}+\frac{2\left[5-\left(5-2x\right)\right]}{12}\)

=> 7-3x+9=24x-48+4x

<=> -3x-24x-4x=-48-7

<=> -31x=-55

<=> x= \(\frac{55}{31}\)

5. \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

<=> \(\frac{7\left(2x-1\right)}{21}-\frac{3\left(5x+2\right)}{21}=\frac{21\left(x+13\right)}{21}\)

=> 14x-7-15x-6=21x+273

<=> 14x-15x-21x=273+7+6

<=> -22x=286

<=> x= -13

27 tháng 2 2020

a/\(\Leftrightarrow3\left(3x-7\right)=5\left(2x-1\right)\Leftrightarrow9x-21=10x-5\Leftrightarrow x=-16\)

b/\(\Leftrightarrow\frac{9x-21+4x-2}{6}=-16\)\(\Leftrightarrow13x-23=-96\Leftrightarrow x=x=-\frac{73}{13}\)

c/\(\Leftrightarrow\frac{3x-x+1}{3}-\frac{2x+1}{5}=0\Leftrightarrow\left(2x+1\right)\left(\frac{1}{3}-\frac{1}{5}\right)=0\Leftrightarrow x=-\frac{1}{2}\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)

24 tháng 11 2019

bạn không ghi yêu cầu nên mình làm như này

1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)

Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)

           \(\left(x-3\right).5=5x-15\)

\(\Rightarrow x^2-3x\ne5x-15\)

\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)

Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)

2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)

Ta có: \(x.\left(x-1\right)=x^2-x\)

          \(2.\left(x^2+x\right)=2x^2+2x\)

\(\Rightarrow x^2-x\ne2x^2+2x\)

\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)

Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)

                \(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)

                                                   \(=x^2-x-2\)  

\(\Rightarrow2x^2-2\ne x^2-x-2\)

\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)

\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)

Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)

3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)

Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)

                                                   \(=5x-1-6x^2\)

          \(2x.\left(3x-2\right)=6x^2-4x\)

\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)

\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)

Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)

                                                             \(=12x^3-14x^2+4x\)

                \(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)

                                                         \(=6x^2-7x+2\)

\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)

\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)

\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)

Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)