K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)

30 tháng 8 2020

Tính

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)

7 tháng 8 2016

\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)

\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)

7 tháng 8 2016

Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)

\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)

Vậy \(S=\frac{49}{300}\)

CHÚC BẠN HỌC TỐT

16 tháng 3 2018

\(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{23.26}\)

\(B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{23}-\frac{1}{26}\)

\(B=\frac{1}{2}-\frac{1}{26}\)

\(B=\frac{13}{26}-\frac{1}{26}\)

\(B=\frac{12}{26}=\frac{4}{13}\)

16 tháng 3 2018

Ta có: 3/2.5=3/3.(1/2-1/5)

3/5.8=3/3.(1/5-1/8)

3/8.11=3/3.(1/8-1/11)

...............................

3/23.26=3/3.(1/23-1/26)

Cộng từng vế ta đc:

B=3/3.(1/5-1/26)=1.21/130=21/130

24 tháng 7 2018

      \(\frac{1}{5.8}\)\(+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=3.\frac{98}{1545}\)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}\)

\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{103}\)

\(\Leftrightarrow x+3=103\)

\(\Leftrightarrow x\)\(=103-3\)

\(\Leftrightarrow x\)\(=100\)

Vậy x = 100

~~~~~~~Hok tốt~~~~~~~~

24 tháng 7 2018

ta có \(\frac{1}{5.8}+\frac{1}{8.11}+...\frac{1}{x.\left(x+3\right)}\)\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}\right)\)\(=\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{98}{1545}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{98}{1545}:\frac{1}{3}=\frac{98}{515}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{98}{515}=\frac{1}{103}\)

\(\Rightarrow x+3=103\)

\(\Rightarrow x=100\)

nhớ k nha

                                   

14 tháng 7 2017

\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(G=1-\frac{1}{16}\)

\(G=\frac{15}{16}\)

14 tháng 7 2017

\(G=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(G=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(G=1-\frac{1}{16}\)

\(G=\frac{15}{16}\)

28 tháng 10 2015

=3/2x( 1/3-1/5+1/5-1/7-1/7+....+ 1/97-1/99)

=3/2x( 1/3-1/99)

=3/2x 32/99

= 16/33

26 tháng 9 2020

\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)

\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)

\(=\frac{99.5}{486}\)

\(=\frac{495}{486}\)

26 tháng 9 2020

Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)

\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)

\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)

\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)

\(A=66.\frac{13}{27}\)

\(A=\frac{286}{9}\)

sai hay đúng cx ko biết nha

31 tháng 3 2017

a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

       \(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)

       \(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)

       \(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)

b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)

      \(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

      \(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

       \(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)

       \(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)

1 tháng 4 2017

mình cũng làm như trên

26 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)

Cái còn lại tự CM

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!