Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé
\(a)\) \(\frac{x-1}{2003}+\frac{x-2}{2002}+\frac{x-3}{2001}-3=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2003}-1\right)+\left(\frac{x-2}{2002}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(-3+3\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2003}+\frac{x-2004}{2002}+\frac{x-2004}{2001}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\right)=0\)
Vì \(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Rightarrow\)\(x=2004\)
Vậy \(x=2004\)
Chúc bạn học tốt ~
\(b)\) \(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}=-4\)
\(\Leftrightarrow\)\(\left(\frac{315-x}{101}+1\right)+\left(\frac{313-x}{103}+1\right)+\left(\frac{311-x}{105}+1\right)+\left(\frac{309-x}{107}+1\right)=-4+4\)
\(\Leftrightarrow\)\(\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\)\(\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
\(\Rightarrow\)\(416-x=0\)
\(\Rightarrow\)\(x=416\)
Vậy \(x=416\)
Chúc bạn học tốt ~
làm như thế này đứng chưa:
315-x/101+313-x/103+311-x/105+309-x/107=-4
<=>(315-x/101+1)+(313-x/103+1)+(311-x/105+1)+(309-x/107+1)=-4+4
<=>x+416/101+x+416/103+x+416/105+x+416/107=0
<=>(x+416)(1/101+1/103+1/105+1/107)=0
<=>x+416=0
=>x=-416
tại s cái bước 2 lại là x + 416/101 chứ k pải là -x+416/101
1,a) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
=> \(\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
=> \(\left(x-\frac{1}{3}\right)=\left(\frac{1}{2}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=-\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{6}\\x=-\frac{1}{6}\end{cases}}\)
\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)
\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)
\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)
\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)
Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=0-66=-66\)
Auto làm nốt câu b
a, Cộng cả 2 vế với 2
Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)
\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)
=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)
Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)
=> \(x=-65\)
b , Lm tương tự như Câu a
Chúc bn hok tốt
#)Giải :
a) \(\left|x-2\right|=2x-9\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-9\\-x+2=2x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=2-9\\-x-2x=-2-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-2x=-7\\-x-2x=-11\end{cases}\Leftrightarrow}x=7}\)
Vậy x = 7
a) \(\left|x-2\right|=2x-9\)
Giải
Nếu \(2x-9< 0\Rightarrow2x< 9\Rightarrow x< \frac{9}{2}\)
\(\Rightarrow\)Không có giá trị của x thỏa mãn bài toán :
Nếu \(2x-9\ge0\Rightarrow2x\ge9\Rightarrow x\ge\frac{9}{2}\)
\(\Rightarrow\orbr{\begin{cases}x-2=-2x+9\\x-2=2x-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2x=2+9\\x-2x=2-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=11\\-x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{3}\left(ktm\right)\\x=7\left(tm\right)\end{cases}}\)
\(\Rightarrow x=7\)
Vậy x = 7
b) \(\frac{x+3}{x-2}< 0\); \(x\ne-2\)
\(\Rightarrow\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\)hoặc\(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\)
Nếu \(\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\Rightarrow x\in\varnothing\)
Nếu \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Rightarrow}x\in\left\{-1;0;1\right\}}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
c) \(\frac{x-3}{x+4}>0;x\ne-4\)
\(\Rightarrow\hept{\begin{cases}x-3>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}}\)
Nếu \(\hept{\begin{cases}x-3>0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-4\end{cases}}}\Rightarrow x>3\)
Nếu \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -4\end{cases}\Rightarrow}x< -4}\)
\(\Rightarrow\orbr{\begin{cases}x>3\\x< -4\end{cases}}\)
Vậy x > 3 hoặc x < - 4
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2