Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{18x-27y}{100}=\frac{27y-24z}{101}=\frac{24z-18x}{102}=\frac{18x-27y+27y-24z+24z-18x}{100+101+102}=\frac{0}{303}=0\)
\(\Rightarrow\frac{27y-24z}{101}=0\Rightarrow27y-24z=0\Rightarrow27y=24z\Rightarrow9y=8z\Rightarrow\frac{y}{8}=\frac{z}{9}\) (1)
\(\frac{24z-18x}{102}=0\Rightarrow24z-18x=0\Rightarrow18x=24z\Rightarrow3x=4z\Rightarrow\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{12+8+9}=\frac{116}{29}=4\)
=> x/12 = 4 => x = 48
y/8 = 4 => y = 32
z/9 = 4 => z = 36
Tâ có \(\frac{315-x}{101}+\frac{313-x}{103}-\frac{x-311}{105}-\frac{x-309}{107}=-4\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{x-309}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}-\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}-\frac{1}{107}\right)=0\)
\(\Rightarrow416-x=0\Leftrightarrow x=416\)
#học tốt
chia đều 4 vào 4 số hạng => tử số đều là (101+315)
=> pt có nghiệm (x=(101+315)
\(\Leftrightarrow\left(\frac{315-x}{101}+1\right)+\left(\frac{313-x}{103}+1\right)+\left(\frac{311-x}{105}+1\right)+\left(\frac{309-x}{107}+1\right)=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Mà \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
\(\Rightarrow416-x=0\Rightarrow x=416\)
Vậy x = 416
Theo đề \(\Rightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)-\left(\frac{303-x}{101}+1\right)-\left(\frac{304-x}{100}+1\right)=0\)
Sau khi đã quy đồng các phân số với các số 1, ta có :
\(\frac{301-x+103}{103}+\frac{302-x+102}{102}-\frac{303-x+101}{101}-\frac{304-x+100}{100}=0\)
\(\Rightarrow\frac{404-x}{103}+\frac{404-x}{102}-\frac{404-x}{101}-\frac{404-x}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\frac{1}{103}+\left(404-x\right)\times\frac{1}{102}-\left(404-x\right)\times\frac{1}{101}-\left(404-x\right)\times\frac{1}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{103}< \frac{1}{102}< \frac{1}{101}< \frac{1}{100}\Rightarrow\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\ne0\)
Để \(\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)thì \(404-x=0\)
\(404-x=0\)
\(\Rightarrow x=404\)
Vậy x=404
Phương trình \(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\frac{404-x}{103}+\frac{404-x}{102}=\frac{404-x}{101}+\frac{404-x}{100}\)
\(\Leftrightarrow\left(404-x\right)\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
\(\Leftrightarrow404-x=0\)vì \(\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)\ne0\)
\(\Leftrightarrow x=404\)
Vậy phương trình có nghiệm x=404