Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+......+\frac{2}{19\times20}\)
\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{19\times20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=2.\frac{19}{20}=\frac{19}{10}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\)\(1-\frac{1}{2014}\)
\(=\)\(\frac{2014}{2014}-\frac{1}{2014}\)
\(=\)\(\frac{2013}{2014}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{2013}{2014}\)
Dấu \(.\) là dấu nhân nhé
Chúc bạn học tốt ~
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2013\times2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}\)
\(=\frac{2013}{2014}\)
CHÚC BN HỌC TỐT!!!!!
\(\frac{3}{6.8}+\frac{3}{8.10}+.......+\frac{3}{198.200}\)
\(=\frac{3}{2}.\left(\frac{2}{6.8}+\frac{2}{8.10}+........+\frac{2}{198.200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+........+\frac{1}{198}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\frac{97}{600}=\frac{97}{400}\)
\(3.\left(\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{198.200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{198}{200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{200}\right).\frac{1}{2}\)
=.\(3.\frac{97}{600}.\frac{1}{2}\)=97/400
\(2\times\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{18x19}+\frac{1}{19x20}\right)\)
\(2x\left(1-\frac{1}{20}\right)=2x\frac{19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=1.\left(1-\frac{1}{20}\right)\)
\(=1.\frac{19}{20}\)
\(=\frac{19}{20}\)
Lưu ý: Từ bước thứ 2 bạn chuyển thành số La-tinh nhé.
P/s: "." là nhân nhé.
\(a.\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
\(b.\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}\)
\(=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{5}\right)\)
\(=2\cdot\frac{3}{10}=\frac{3}{5}\)
\(c.\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}\)
\(=\frac{1}{6}+\frac{2}{15}+\frac{3}{40}\)
\(=\frac{3}{8}\)
k nha 500 AE
a, \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
b, \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\left(\frac{1}{2}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\frac{3}{10}\times\frac{2}{1}\)
\(=\frac{3}{5}\)
c, \(\frac{1}{2\times3}+\frac{2}{3\times5}+\frac{3}{5\times8}\)
\(=\frac{3-2}{2\times3}+\frac{5-3}{3\times5}+\frac{8-5}{5\times8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
1/3-1/4 + 1/4-1/5 + 1/5-1/6 + 1/6-1/7 +...+ 1/11-1/12= 1/3-1/12 =1/4
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(=\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{3}-\frac{1}{12}=\frac{1}{4}\)
\(a)\frac{a}{b}\times4+\frac{1}{6}=\frac{17}{6}\)
\(\frac{a}{b}\times4\) \(=\frac{17}{6}-\frac{1}{6}\)
\(\frac{a}{b}\times4\) \(=\frac{8}{3}\)( Đây là kết quả khi rút gọn phân số 16/6 nha )
\(\frac{a}{b}\) \(=\frac{8}{3}\div4\)
\(\frac{a}{b}\) \(=\frac{8}{3}\times\frac{1}{4}\)
\(\frac{a}{b}\) \(=\frac{2}{3}\)
\(b)\frac{4}{5}\div\frac{a}{b}\times2=\frac{16}{5}\)
\(\frac{4}{5}\div\frac{a}{b}\) \(=\frac{16}{5}\div2\)
\(\frac{4}{5}\div\frac{a}{b}\) \(=\frac{16}{5}\times\frac{1}{2}\)
\(\frac{4}{5}\div\frac{a}{b}\) \(=\frac{8}{5}\)
\(\frac{a}{b}\) \(=\frac{4}{5}\div\frac{8}{5}\)
\(\frac{a}{b}\) \(=\frac{4}{5}\times\frac{5}{8}\)
\(\frac{a}{b}\) \(=\frac{1}{2}\)
Nếu có gì ko hiểu bạn cứ hỏi mik nha.
x là nhân
Trả lời:
\(\frac{2\times4+2\times4\times8+4\times8\times16+8\times16\times32}{3\times4+2\times6\times8+4\times12\times16+8\times24\times32}\)
\(=\frac{2\times4+2\times4\times8+2.2\times2.4\times16+4.2\times4.4\times32}{3\times4+2\times2.3\times2.4+4\times3.4\times4.4+8\times8.3\times8.4}\)
\(=\frac{2\times4\times\left(1+8+2\times2\times16+4\times4\times32\right)}{3\times4\times\left(1+2\times2\times2+4\times4\times4+8\times8\times8\right)}\)
\(=\frac{2\times4\times\left(1+8+64+512\right)}{3\times4\times\left(1+8+64+512\right)}\)
\(=\frac{2}{3}\)