Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)
2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)
\(\frac{2x}{3y}.\frac{3y}{2x}=1\)
3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)
4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)
5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)
7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)
mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được
\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0
<=> x + 59 = 0
<=> x=-59
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
1,(3x-2)(4x+5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\4x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-5}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là ...
2,\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=15-28+19-22\)
\(\Leftrightarrow-8x=-16\)
=> x= 2
vậy..
3,\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\right)-4=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}-4=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}=0\) ( vô nghiệm )
(vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{13}{4}\ge0\) )
từ đó suy ra phương trình vô nghiệm
5,\(\frac{4x+3}{2}-2+3x=\frac{2x-1}{10}+\frac{19x+2}{5}-1\)
\(\Leftrightarrow\frac{5\left(4x+3\right)}{10}-\frac{10\left(2-3x\right)}{10}=\frac{2x-1}{10}+\frac{2\left(19x+2\right)}{10}-\frac{10}{10}\)
\(\Leftrightarrow\frac{20x+15}{10}-\frac{20-30x}{10}=\frac{2x-1}{10}+\frac{38x+4}{10}-\frac{10}{10}\)
\(\Rightarrow20x+15-20+30x=2x-1+38x+4-10\)
\(\Leftrightarrow20x+30x-2x-38x=-15+20-1+4-10\)
\(\Leftrightarrow10x=-2\)
\(\Leftrightarrow x=-5\)
Vậy ....
p/s : thực ra mk cx chỉ ms học th nên giải bài tập về phương trình vẫn còn nhiều chỗ sai nữa,có gì mong mn giúp đỡ :)
\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)
\(< =>4x-12-4x+2=10x+10+5\)
\(< =>10x=-10-10-5=-25\)
\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)
\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)
\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)
\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)
\(a,\frac{3\left(2x-1\right)}{4}-\frac{3x+1}{10}+1=\frac{2\left(3x+2\right)}{5}\)
Biến đổi pt về dạng:
\(15\left(2x-1\right)-2\left(3x+1\right)+20=8\left(3x+2\right)\)
\(\Leftrightarrow24x+3=24x+16\)
\(\Leftrightarrow3=16\left(vl\right)\)
Vậy pt vô nghiệm
Ta có :
\(\frac{2x+2}{5}+\frac{3}{10}>\frac{3x-2}{4}\)
\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{4.5}+\frac{2.3}{2.10}>\frac{5\left(3x-1\right)}{5.4}\)
\(\Leftrightarrow\)\(\frac{8x+8+6}{20}>\frac{15x-5}{20}\)
\(\Leftrightarrow\)\(8x+14>15x-5\)
\(\Leftrightarrow\)\(8x+19>15x\)
\(\Leftrightarrow\)\(15x-8x< 19\)
\(\Leftrightarrow\)\(7x< 19\)
\(\Leftrightarrow\)\(x< \frac{19}{7}\)
Vậy \(x< \frac{19}{7}\)
Chúc bạn học tốt ~
Em ghi nhầm nha chị
\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{4.5}+\frac{2.3}{2.10}>\frac{5\left(3x-2\right)}{5.4}\)
\(\Leftrightarrow\)\(\frac{8x+8+6}{20}>\frac{15x-10}{20}\)
\(\Leftrightarrow\)\(8x+14>15x-10\)
\(\Leftrightarrow\)\(15x-8x< 14+10\)
\(\Leftrightarrow\)\(7x< 24\)
\(\Leftrightarrow\)\(x< \frac{24}{7}\)
Vậy \(x< \frac{24}{7}\)