Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !
Áp dụng tính chất của dãy tỷ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{2}=2\Rightarrow y=4\)
\(\frac{z}{3}=2\Rightarrow z=6\)
Vậy x = 10 , y = 4 , z = 6
a) \(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=3k\end{cases}}\)
\(\Rightarrow2.5k-3.2k+5.3k=38\)
\(\Rightarrow10k-6k+15k=38\)
\(\Rightarrow19k=38\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=10\\y=4\\z=6\end{cases}}\)
Từ x+y = 2y ta có :
x - 2y + z = 0 hay 2x - 4y + 2z = 0 hay 2x - y - 3y + 2z = 0 hay 2x - y = 3y - 2z
Vậy nếu \(\frac{2x-y}{5}=\frac{3y-2z}{15}\)thì: 2x - y = 3y - 2z = 0 ( do 5 khác 15).
Từ 2x - y = 0 suy ra : x = 1/2y
Từ 3y - 2z = 0 và x + z = 2y suy ra : x + y + z - 2z = 0 hay 1/2 y + y - z =0
hay 3/2 y - z = 0 hay y = 2/3 z.Suy ra: x = 1/3 z.
Vậy các số cần tìm là : { x = 1/3 z, y=2/3 z với z thuộc R} hoặc {x=1/2 y, y thuộc R, z = 3/2 y} hoặc {x thuộc R, y=2x, z=3x}
Bn vào câu hỏi tương tự nhé!Nếu ko có thì bn lên mạng nha!!!!!!
K mk nhé!
thanks!
haha!!!
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
\(\frac{2x-y}{5}=\frac{3y-2z}{15}\)x + z = 2y
Từ x + z = 2y ta có:
x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z
Từ Từ 2x – y = 0 suy ra: x = 1/2y
Từ 3y – 2z = 0 và x + z = 2y. \Rightarrow⇒ x + z + y – 2z = 0 hay 1/2y + y – z = 0
Hay 3/2y - z = 0 hay y = 2/3z. suy ra: x = 1/3z.
Vậy các giá trị x, y, z cần tìm là: \(\left\{x=\frac{1}{3}z;y=\frac{2}{3}z;\text{v}ớiz\in R\right\}\)
Hoặc: \(\left\{x=\frac{1}{2}y;y\in R;z=\frac{3}{2}y\right\}\)hoặc \(\left\{x\in R;y=2x;z=3x\right\}\)