K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

\(\frac{2x-1}{8}-\frac{x+2}{3}=\frac{x}{6}+x\)

<=> \(\frac{3\left(2x-1\right)}{24}-\frac{8\left(x+2\right)}{24}=\frac{4x}{24}+\frac{24x}{24}\)

<=> \(3\left(2x-1\right)-8\left(x+2\right)=4x+24x\)

<=> \(6x-3-8x-16=28x\)

<=> \(-2x-19=28x\)

<=> \(-2x-28x=19\)

<=> \(-30x=19\)

<=> \(x=-\frac{19}{30}\)

\(\frac{2x-1}{8}-\frac{x+2}{3}=\frac{x}{6}+x\)

\(\frac{3\left(2x-1\right)}{24}-\frac{8\left(x+2\right)}{24}=\frac{4x}{24}+\frac{24x}{24}\)

Khử mẫu ta đc : \(6x-3-8x-16=4x+24x\)( - bên ngoài bên trong đổi dấu. )

\(-2x-19-4x-24x=0\)

\(-30x-19=0\Leftrightarrow x=-\frac{19}{30}\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

1 tháng 4 2020

a) Đk: x \(\ne\)-2

Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)

<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10

<=> -4x - 8 = 5x + 10

<=> -4x - 5x = 10 + 8

<=> -9x = 18

<=> x = -2 (ktm)

=> pt vô nghiệm

b) Đk: x \(\ne\)2; x \(\ne\)-3

Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)

<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)

<=> x + 3 - 6x + 12 = -5

<=> -5x = -5 - 15

<=> -5x = -20

<=> x = 4 

vậy S = {4}

c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11

Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)

<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)

<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)

Vậy S = {0}

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

⇔ 3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\) i,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

18 tháng 5 2020

\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)

=> \(\frac{x+5}{4}-\frac{2x-3}{3}-\frac{6x-1}{8}-\frac{2x-1}{12}=0\)

=> \(\frac{6x+30}{24}-\frac{16x-24}{24}-\frac{18x-3}{24}-\frac{4x-2}{24}=0\)

=> \(\left(6x+30\right)-\left(16x-24\right)-\left(18x-3\right)-\left(4x-2\right)=0\)

=> \(6x+30-16x+24-18x+3-4x+2=0\)

=> \(\left(6-16-18-4\right)x+\left(30+24+3+2\right)=0\)

=> \(-32x+59=0\)

=> \(-32x=-59\)

=> \(x=\frac{-59}{-32}=\frac{59}{32}\)

18 tháng 5 2020

\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)

\(< =>\frac{6x+30}{24}-\frac{16x-24}{24}=\frac{18x-3}{24}+\frac{4x-2}{24}\)

\(< =>\frac{6x+30}{24}-\frac{16x-24}{24}-\frac{18x-3}{24}-\frac{4x-2}{24}=0\)

\(< =>6x+30-16x+24-18x+3-4x+2=0\)

\(< =>6x-16x-18x-4x+\left(30+24+3+2\right)=0\)

\(< =>x\left(6-16-18-4\right)+59=0\)

\(< =>x.\left(-32\right)=-59\)\(\)

\(< =>x=\frac{59}{32}\)

18 tháng 2 2021

a) ĐKXĐ : \(x\ne-2;x\ne5\)

\(\frac{7}{x+2}=\frac{3}{x-5}\)

<=> 3(x + 2) = 7(x - 5)

<=> 3x + 6 = 7x - 35

<=> 4x = 41

<=>x = 41/4 (tm)

Vậy x = 41/4 là ngiệm phương trình

b) ĐKXĐ \(x\ne\pm3\)

\(\frac{2x-1}{x+3}=\frac{2x}{x-3}\)

<=> \(\frac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

<=> (2x - 1)(x - 3) = 2x(x + 3)

<=> 2x2 - 7x + 3 = 2x2 + 6x

<=> 13x = 3

<=> x = 3/13 (tm)

Vậy x = 3/13 là nghiệm phương trình

c) ĐKXĐ : \(x\ne-7;x\ne1,5\)

Khi đó \(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

<=> \(\frac{\left(3x-2\right)\left(2x-3\right)}{\left(x+7\right)\left(2x-3\right)}=\frac{\left(6x+1\right)\left(x+7\right)}{\left(x+7\right)\left(2x-3\right)}\)

<=> (3x - 2)(2x - 3) = (6x + 1)(x + 7)

<=> 6x2 - 13x + 6 = 6x2 + 43x + 7

<=> 56x = -1

<=> x = -1/56 (tm) 

Vậy x = -1/56 là nghiệm phương trình

d) ĐKXĐ : \(x\ne\pm1\)

Khi đó \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

<=> \(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

<=> (2x + 1)(x + 1) = 5(x - 1)2

<=> 2x2 + 3x + 1 = 5x2 - 10x + 5

<=> 3x2 - 13x + 4 = 0

<=> 3x2 - 12x - x + 4 = 0

<=> 3x(x - 4) - (x - 4) = 0

<=> (3x - 1)(x - 4) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy x \(\in\left\{\frac{1}{3};4\right\}\)là nghiệm phương trình

18 tháng 2 2021

e) ĐKXĐ : \(x\ne1\)

Khi đó \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)

<=> \(\frac{3x-5}{x-1}=2\)

<=> 3x - 5 = 2(x - 1) 

<=> 3x - 5 = 2x - 2

<=> x = 3 (tm) 

Vậy x = 3 là nghiệm phương trình

f) ĐKXĐ : \(x\ne-1\)

 \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> \(\frac{3x+2}{x+1}=3\)

<=> 3x + 2 = 3(x + 1)

<=> 3x + 2 = 3x + 3

<=> 0x = 1

<=> \(x\in\varnothing\)

Vậy tập nghiệm phương trình S = \(\varnothing\)

g) ĐKXĐ : \(x\ne2\)

Khi đó \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

<=>\(\frac{x-2}{x-2}=3\)

<=> (x - 2) = 3(x - 2)

<=> x - 2 = 3x - 6

<=> -2x = -4

<=> x = 2 (loại) 

Vậy tập nghiệm phương trình S = \(\varnothing\)

h) ĐKXĐ : \(x\ne7\)

Khi đó \(\frac{1}{7-x}=\frac{x-8}{x-7}-8\)

<=> \(\frac{x-7}{x-7}=8\)

<=> x - 7 = 8(x - 7)

<=> x - 7 = 8x - 56

<=> 7x = 49

<=> x = 7 (loại)

Vậy tập nghiệm phương trình S = \(\varnothing\)

i) ĐKXĐ : \(x\ne0;x\ne6\)

Ta có : \(\frac{x+6}{x}=\frac{1}{2}+\frac{15}{2\left(x-6\right)}\)

<=> \(\frac{x+6}{x}-\frac{15}{2\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2\left(x+6\right)\left(x-6\right)}{2x\left(x-6\right)}-\frac{15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2x^2-72-15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> 4x2 - 144 - 30x = 2x(x - 6) 

<=> 2x2 - 18x - 144 = 0

<=> x2 - 9x - 72 = 0

<=> x2 - 9x + 81/4 - 72- 81/4 = 0

<=> \(\left(x-\frac{9}{2}\right)^2-\frac{369}{4}=0\)

<=> \(\left(x-\frac{9}{2}+\sqrt{\frac{369}{4}}\right)\left(x-\frac{9}{2}-\sqrt{\frac{369}{4}}\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{9}{2}-\sqrt{\frac{369}{4}}\\x=\frac{9}{2}+\sqrt{\frac{369}{4}}\end{cases}}\)(tm)

Vậy x \(\in\left\{\frac{9}{2}-\sqrt{\frac{369}{4}};\frac{9}{2}+\sqrt{\frac{369}{4}}\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

a)

ĐKXĐ: \(x\neq 0; x\neq -10\)

\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)

\(\Leftrightarrow \frac{x+10+x}{x(x+10)}=\frac{1}{12}\)

\(\Leftrightarrow \frac{2x+10}{x(x+10)}=\frac{1}{12}\)

\(\Rightarrow 12(2x+10)=x(x+10)\)

\(\Leftrightarrow x^2-14x-120=0\)

\(\Leftrightarrow (x+6)(x-20)=0\Rightarrow \left[\begin{matrix} x=-6\\ x=20\end{matrix}\right.\) (đều thỏa mãn)

b)

ĐKXĐ: \(x\neq 0; x\neq 3\)

PT\(\Leftrightarrow \frac{(x+3).x-(x-3)}{x(x-3)}=\frac{3}{x(x-3)}\)

\(\Leftrightarrow \frac{x^2+2x+3}{x(x-3)}=\frac{3}{x(x-3)}\)

\(\Rightarrow x^2+2x+3=3\)

\(\Leftrightarrow x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\) . Kết hợp với đkxđ suy ra $x=-2$

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

c)

ĐKXĐ: \(x\neq \pm 2\)

\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{3(x-2)-2(x+2)}{(x+2)(x-2)}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{x-10}{x^2-4}+\frac{8}{x^2-4}=0\)

\(\Leftrightarrow \frac{x-2}{x^2-4}=0\Leftrightarrow \frac{1}{x+2}=0\) (vô lý)

Vậy pt vô nghiệm.

d)

ĐKXĐ: \(x\neq -2; x\neq 3\)

PT \(\Leftrightarrow \frac{3(x-3)-2(x+2)}{(x+2)(x-3)}=\frac{8}{(x-3)(x+2)}\)

\(\Leftrightarrow \frac{x-13}{(x+2)(x-3)}=\frac{8}{(x-3)(x+2)}\)

\(\Rightarrow x-13=8\Rightarrow x=21\) (thỏa mãn)

Vậy..........