Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)
\(C=\sqrt{6+2\sqrt{3}-2}\)
\(C=\sqrt{4+2\sqrt{3}}\)
\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1\)
\(=2\sqrt{2}\approx2,82843\)
2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)
\(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)
3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)
\(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
mình ghi nhầm pn ơi.. bài 2 là \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{6}}\)
\(\frac{\sqrt{\sqrt{4+\sqrt{15}}+\sqrt{5-\sqrt{21}}}}{\sqrt{6+\sqrt{35}}}\)+\(\sqrt{\frac{1}{4-2\sqrt{3}}}\)-\(\sqrt{\frac{1}{4+2\sqrt{3}}}\)
=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(8+2\sqrt{15}\right)}+\sqrt{\frac{1}{2}\left(10-2\sqrt{21}\right)}}}{\sqrt{\frac{1}{2}\left(12+2\sqrt{35}\right)}}\)+\(\sqrt{\frac{1}{3-2\sqrt{3}.1+1}}\)-\(\sqrt{\frac{1}{3+2\sqrt{3}.1+1}}\)
=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(5+2\sqrt{5}.\sqrt{3}+3\right)}+\sqrt{\frac{1}{2}\left(7-2\sqrt{7}.\sqrt{3}+3\right)}}}{\sqrt{\frac{1}{2}\left(7+2\sqrt{7}.\sqrt{5}+5\right)}}\)+\(\sqrt{\frac{1}{\left(\sqrt{3}-1\right)^2}}\)-\(\sqrt{\frac{1}{\left(\sqrt{3}+1\right)^2}}\)
=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)^2}}}{\sqrt{\frac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)^2}}\)+\(\frac{1}{\sqrt{3}-1}\)-\(\frac{1}{\sqrt{3}+1}\)
=\(\frac{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{5}+\sqrt{3}\right)+\sqrt{\frac{1}{2}}.\left(\sqrt{7}-\sqrt{3}\right)}}{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}\)+\(\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\)
=\(\frac{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}}{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}\)+1
=\(\frac{1}{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}}\)+1
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
\(\frac{2\left(\sqrt{7}-2\sqrt{3}\right)}{3\sqrt{5}\left(\sqrt{7}-2\sqrt{3}\right)}\)
\(\frac{2}{3\sqrt{5}}\)
sai bạn e