K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)

\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)

\(\Leftrightarrow-14ad+14bc=39ad-39bc\)

\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)

=>ad-bc=0

=>ad=bc

hay a/b=c/d

 

3 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)

\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)

\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)

4 tháng 11 2017

Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)

Thay (1) vào ta có :

\(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k-3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(2)

\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(3)

Từ (2) và (3)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

\(\RightarrowĐPCM\)

4 tháng 11 2017

ta có:a/b=c/d suy ra a/c=b/d suy ra 5a/5c=3b/3d

áp dụng tính chất dãy tỉ số bằng nhau ta có

a/c=b/d=5a/5c=3b/3d=5a+3b/5c+3d=5a-3b=5c-3d

Suy ra ĐPCM

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$

$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$

$\Rightarrow 3a-2b=2c-5a=5b-3c=0$

$\Rightarrow 3a=2b; 2c=5a$

$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$

Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$

$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$

20 tháng 9 2019

Ta có: \(\frac{a}{a'}+\frac{b}{b'}=1\)

\(\Rightarrow\frac{a}{a'}.\frac{b}{b'}+\frac{b'}{b}.\frac{b}{b'}=\frac{b}{b'}.\)

\(\Rightarrow\frac{ab}{a'b'}+1=\frac{b}{b'}\) (1).

\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(\Rightarrow\frac{b}{b'}=1-\frac{c'}{c}\) (2).

Từ (1) và (2) => \(\frac{ab}{a'b'}=-\frac{c'}{c}\)

\(\Rightarrow abc=-a'b'c'\)

\(\Rightarrow abc+a'b'c'=0\left(đpcm\right).\)

Vậy \(abc+a'b'c'=0.\)

Chúc bạn học tốt!

20 tháng 9 2019

Không có gì nhé.