\(\frac{2ab^2-2an-5a^2n+5a^2b^2}{5an+a^2b^2-5ab^2-a^2n}\)

a)Tính giá t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

điều kiện:b^2 khác n. a khác 5

A=\(=\frac{2ab^2-2an-5a^2n+5a^2b^2}{5an-5ab^2+a^2b^2-a^2n}=\frac{2a\left(b^2-n\right)+5a^2\left(b^2-n\right)}{-5a\left(b^2-n\right)+a^2\left(b^2-n\right)}=\frac{\left(b^2-n\right)\left(2a+5a^2\right)}{\left(b^2-n\right)\left(a^2-5a\right)}=\frac{a\left(2+5a\right)}{a\left(a-5\right)}=\frac{2+5a}{a-5}\)

thay a vào rồi tính là ok

 

5 tháng 3 2018

a) ĐẶT \(A=\frac{7n-8}{2n-3}=\frac{7n-\frac{21}{2}+\frac{5}{2}}{2n-3}=\frac{\frac{7}{2}\left(2n-3\right)+\frac{5}{2}}{2n-3}=\frac{7}{2}+\frac{\frac{5}{2}}{2n-3}\)

Để A có GTLN\(\Leftrightarrow\frac{\frac{5}{2}}{2n-3}\)có GTLN

\(\Leftrightarrow2n-3\)có GTNN \(2n-3>0\)

\(\Leftrightarrow2n-3=1\)

\(\Leftrightarrow2n=4\)

\(\Leftrightarrow n=2\)

Vậy A có GTLN là 6 khi x=2

b) Ta có: \(\left(5a-3b+12\right)\left(2a-7b+3\right)⋮5\)

MÀ \(\left(5a-3b+12\right)̸⋮5\)(vì 12 ko chia hết cho 5)

\(\Rightarrow2a-7b+3⋮5\)

\(2a-2b-5b+3⋮5\)

MÀ \(5b⋮5\)

\(\Rightarrow2a-2b+3⋮5\)

Và \(40a-10⋮5\)

\(\Rightarrow2a-2b+3+40a-10⋮5\)

\(\Rightarrow42a-2b-7⋮5\left(ĐPCM\right)\)

5 tháng 3 2018

cảm on bạn nhiều nha Huỳnh Phước Mạnh

3 tháng 5 2018

Ta có: a2 = 4b2 => a2 = (2b)2 =>a = 2b

=> \(P=\frac{3a-b}{5a+2b}=\frac{6b-b}{10b+2b}=\frac{5b}{12b}=\frac{5}{12}\)

Đặt  \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\), ta được \(a=2k;b=5k;c=7k\)Ta có:

\(\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

\(\Rightarrow A=\frac{4}{5}\)

1 tháng 2 2017

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)

=> a = 2k ; b = 5k ; c = 7k . Thay vào A ta được :

\(A=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{k\left(2-5+7\right)}{k\left(2+2.5-7\right)}=\frac{2-5+7}{2+2.5-7}=\frac{4}{5}\)