Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: \(4^{51}+2^{104}+4^{53}\\ =4^{51}+\left(2^2\right)^{52}+4^{53}\\ =4^{51}+4^{52}+4^{53}\\ =4^{51}\left(1+4+4^2\right)\\ =4^{51}\cdot21⋮21\left(đpcm\right)\)
b) Có: \(125^{10}+5^{31}+25^{16}\\ =\left(5^3\right)^{10}+5^{31}+\left(5^2\right)^{16}\\ =5^{30}+5^{31}+5^{32}\\ =5^{30}\left(1+5+5^2\right)\\ =5^{30}\cdot31⋮31\left(đpcm\right)\)
c) Có: \(2^{25}+4^{13}+8^9\\ =2^{25}+\left(2^2\right)^{13}+\left(2^3\right)^9\\ =2^{25}+2^{26}+2^{27}\\ =2^{23}\left(2^2+2^3+2^4\right)\\ =2^{23}\cdot28⋮28\left(đpcm\right)\)
\(a)=\frac{7}{25}+\frac{4}{13}-\frac{5}{2}+\frac{18}{25}-\frac{17}{13}\)
\(=1-1-\frac{5}{2}\)
\(=-\frac{5}{2}\)
Bạn viết sai phân số cuối cùng.
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2\sqrt{1}-1\sqrt{2}}{\left(2\sqrt{1}+1\sqrt{2}\right)\left(2\sqrt{1}-1\sqrt{2}\right)}=\frac{2\sqrt{1}-1\sqrt{2}}{\left(2\sqrt{1}\right)^2-\left(1\sqrt{2}\right)^2}=\frac{2\sqrt{1}-1\sqrt{2}}{2^21-1^22}=\frac{2\sqrt{1}-1\sqrt{2}}{1.2}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự:
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{3\sqrt{2}-2\sqrt{3}}{3^22-2^23}=\frac{3\sqrt{2}-2\sqrt{3}}{2.3}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
....
\(\frac{1}{25\sqrt{24}+24\sqrt{25}}=\frac{25\sqrt{24}-24\sqrt{25}}{25^224-24^225}=\frac{25\sqrt{24}-24\sqrt{25}}{25.24}=\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)
Vậy \(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=\frac{1}{1}-\frac{1}{5}=\frac{4}{5}\)
\(A=\frac{9}{8}-\frac{8}{9}+\frac{3}{25}+\frac{1}{4}-\frac{5}{16}+\frac{19}{25}-\frac{1}{9}+\frac{2}{25}-\frac{1}{81}\)
\(A=\left(\frac{9}{8}+\frac{1}{4}-\frac{5}{16}\right)-\left(\frac{8}{9}+\frac{1}{9}-\frac{1}{81}\right)+\left(\frac{3}{25}+\frac{19}{25}+\frac{2}{25}\right)\)
\(A=\frac{17}{16}-\frac{80}{81}+\frac{24}{25}\)
\(A=\frac{33529}{32400}\)