Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 2006 X 2008 - 20072
A = 2006 . 2008 - 2007 . 2007
A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )
A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007
A = -1
B= 2016 X 2018 - 20172
B= 2016 . 2018 - 2017 . 2017
B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )
B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017
B = -1
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
\(\frac{2016-x}{2017}\)+\(\frac{2017-x}{2016}\)+2=\(\frac{2016}{2017-x}\)+\(\frac{2017}{2016-x}\)+2
\(\frac{4033-x}{2017}\)+\(\frac{4033-x}{2016}\)=\(\frac{4033-x}{2017-x}\)+\(\frac{4033-x}{2016-x}\)
(4033-x)(\(\frac{1}{2017}\)+\(\frac{1}{2016}\)-\(\frac{1}{2017-x}\)-\(\frac{1}{2016-x}\))=0
=>\(\hept{\begin{cases}4033-x=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2017-x}-\frac{1}{2016-x}\end{cases}}=0\)
=>x=4033
x=0
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
\(A=\frac{1}{2017+2016}\)
\(B=\frac{2017+2016}{2017^2+2016^2}\)
\(\frac{A}{B}=\frac{2017^2+2016^2}{\left(2017+2016\right)^2}=1+\frac{1}{2.2017.2016}>1\)=> A>B
Câu A không biết đâu là tử đâu là mẫu
câu b cũng thế
Dùng f(x) viết lại đi
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
Ta có : x = 99
=> 100 = x + 1
Thay vào A ta có : A = x2018 - 100x2017 + 100x2016 - ...... + 100x2 - 100x + 2019
=> A = x2018 - (x + 1)x2017 + (x + 1)x2016 - ...... + (x + 1)x2 - (x + 1)x + 2019
=> A = x2018 - x2018 - x2017 + x2017 + x2016 -.......+ x3 + x2 - x2 + x + 2019
=> A = x + 2019
=> A = 99 + 2019
=> A = 2118
P/s : ko cần ! :D
Theo đề bài ra ta có :
x = 99
Thay vào A ta có :
A = x2018 - 100x2017 + 100x2016 - ... + 100x2 - 100x + 2019
\(\Rightarrow\) A = x2018 - ( x + 1 ) x2017 + ( x + 1 ) x2016 - ... + ( x + 1 ) x2 - ( x + 1 ) x + 2019
\(\Rightarrow\) A = x2018 - x2018 - x2017 + x2017 + x2016- ... + x3 + x2 - x2 + x + 2019
\(\Rightarrow\) A = x + 2019
\(\Rightarrow\) A = 99 + 2019
\(\Rightarrow\) A = 2118
Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z
Bạn áp dụng vào nhé.
Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)
Ta có :
\(x^2+y^2+z^2=xy+xz+yz\)
\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)
\(\Rightarrow x-y=x-z=y-z=0\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)
Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)
\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)
\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)
ta có 2015 x 2017 >2017^2 -2
2016 x 2018 > 2016^2
=> A> B
2^2016+2^2016/-2^2017
=2^2016(1+1)/-2^2017
=2^2017/-2^2017
=-1
-1 mk làm r bạn ạ