K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(=\frac{\left(3.7\right)^4}{3^3.\left(-7\right)^3}+7\)

\(=\frac{3^4.7^4}{3^3.\left(-7\right)^3}+7\)

=\(\) 3.(-7)+7

= -14

17 tháng 6 2019

\(\frac{21^4}{27.\left(-343\right)}+7\)

=> \(\frac{\left(3.7\right)^4}{3^3.\left(-7\right)^3}+7=>\frac{3^3.3.7^3.7}{3^3.\left(-7\right)^3}+7\)

=> 3 . (-7) + 7

= -21 + 7 = -14

28 tháng 9 2019

\(\frac{21^4}{27\cdot(-343)}+7\)

\(=\frac{(3\cdot7)^4}{3^3\cdot(-7)^3}+7\)

\(=\frac{3^4\cdot7^4}{3^3\cdot(-7)^3}+7\)

\(=3\cdot(-7)+7=-14\)

21 tháng 2 2016

Gọi \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

      \(B=1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\)

Từ đề bài ta có

\(D=182\left[\frac{A}{2A}:\frac{4B}{B}\right]:\frac{919191}{808080}\)

\(D=182\times\left(\frac{1}{2}:4\right):\frac{91}{80}\)

\(D=182\times\frac{1}{8}\times\frac{80}{91}\)

\(D=\frac{91\times2\times1\times8\times10}{8\times91}=20\)

cho tui nha

21 tháng 2 2016

Ta có:\(D=182\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}:\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)

\(D=182\left[\frac{1\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{2}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)

\(D=182\left[\frac{1}{2}:4\right]:\frac{919191}{808080}=182\left[\frac{1}{2}.\frac{1}{4}\right]:\frac{919191}{808080}=182.\frac{1}{8}:\frac{919191}{808080}=\frac{182}{8}:\frac{919191}{808080}\)\(\frac{919191}{808080}=\frac{919191:10101}{808080:10101}=\frac{91}{80}\)

\(\Rightarrow D=\frac{182}{8}:\frac{91}{80}=\frac{182}{8}.\frac{80}{91}=\frac{182.80}{8.91}=\frac{91.2.8.10}{8.91}=2.10=20\)

Vậy D=20
 

4 tháng 10 2021

yutyugubhujyikiu

27 tháng 6 2016

làm giúp mk đi mà chiều mk phải nộp rồi

21 tháng 3 2019

\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}\)

\(B=\frac{1}{4}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1}{4}\)