Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\)\(\frac{2}{97.99}\)
\(A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.........+\frac{1}{97.99}\right)\)
\(A=2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=2\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)
\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)
\(\Rightarrow x=\frac{198}{99}=2\)
Vậy x = 2
=>\(T=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{98^2}{97.99}.\frac{99^2}{98.100}\)
=>\(T=\frac{2^2.3^2.4^2...98^2.99^2}{1.3.2.4.3.5...97.99.98.100}\)
Trông thì khó vậy nhưng thực ra ko khó đâu, bạn chỉ việc rút gọn từ trên tử xuống dưới mẫu là xong
=>\(T=\frac{2.99}{1.100}=\frac{99}{50}=1\frac{49}{50}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{3.5}....\frac{98.98}{97.99}.\frac{99.99}{98.100}\)
\(=\frac{2.3.4....98.99}{1.3.5...97.98}.\frac{2.3.4....98.99}{3.5.7...99.100}\)
rút gọn đi có :
\(\frac{99}{1}.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)
= 2 x [1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +1/7 -1/9 + .., +1/99 - 1/101
= 2 x [ 1 - 1/101 ]
= 2 x 100/101
= 200/101
t cho mik nha
\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.........+\(\frac{2}{99.101}\)
=\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\)
= 1 - \(\frac{1}{101}\)= \(\frac{100}{101}\)
A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.........+1/97-1/99
=1-1/97=98/99
CHÕ KIA BN SAI ĐỀ MÌNH SỬA LUÔN CHO RỒI
giải
A = \(\frac{1}{1.3}\)+ \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+....+\(\frac{2}{97.99}\)
= \(\frac{1}{3}\)+ [ ( \(\frac{1}{3}\)- \(\frac{1}{5}\)) +(\(\frac{1}{5}\)-\(\frac{1}{7}\)) +....+ (\(\frac{1}{97}\)-\(\frac{1}{99}\))]
= \(\frac{1}{3}\)+ ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{97}\)-\(\frac{1}{99}\))
= \(\frac{1}{3}\)+(\(\frac{1}{3}\)-\(\frac{1}{99}\))
= \(\frac{1}{3}\)+ \(\frac{32}{99}\)
= \(\frac{1}{99}\)
Vậy A = \(\frac{1}{99}\)
GIẢI THIK CÁCH LÀM
HAI SỐ TẠO NÊN TÍCH Ở MẪU CÓ SỐ T1 KÉMSỐ T2 BẰNG 1 SỐ Ở TỬ THÌ PHÂN SỐ ĐÓ SẼ BẰNG HIỆU CỦA 2 PHÂN SỐ CÓ TỬ LAF1 , MẪU LÀ SỐ T1 TRỪ ĐI PHÂN SỐ CÓ TỬ LÀ 1 , MẪU LÀ SỐ T2
*chú ý rằng chỉ áp dụng cho phân số có mẫu có thừa số t1 kém thừa số t2 bằng tử thôi nha!
mik sẽ lấy vd cho bạn xem
\(\frac{3}{5.8}\)=\(\frac{1}{5}\)-\(\frac{1}{8}\)
chúc bạn học giỏi
Ta có :
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\frac{98}{99}-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(x=\frac{98}{99}+\frac{100}{99}\)
\(\Leftrightarrow\)\(x=\frac{198}{99}\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
Chúc bạn học tốt ~
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
= \(1-\frac{1}{99}\)
= \(\frac{98}{99}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
= \(1-\frac{1}{99}\)
= \(\frac{98}{99}\)